Catalog 0900P-6 Parker Pneumatic

Rodless Pneumatic Cylinders Contents - www.parker.com/pneu/actuators

Rodless Design

Pneumatic Cylinders

System Concept & Components	G2-G8
Standard Series	
Features	G9-G1
Ordering Information	G11
Options / Technical Data	G12-G1
Dimensional Data	G16-G1
3/2 Way Valves VOE	G20-G2
Active Brake	G22-G2
Accessories	G24-G3
Clean Room	G36-G3
Bi-Parting	G40-G4
Linear Guides	
Features	G43-G4
SLIDELINE	G45-G4
POWERSLIDE	G50-G5
PROLINE	G54-G5
STARLINE	G59-G6
KF	G64-G7
HD	G71-G7
Accessories	G79-G8
Sensors	G87-G9
Sensoflex	G95-G9

G98
G99
G100-G104
G105-G114
G115

P1Z Series - Magnetically Coupled Rodless

Basic Features	G116
Ordering Information	G117
Specifications / Technical Data	G118-G119
Dimensional Data	G120
Accessories	G121
Guided Features	G122
Ordering Information	G123
Specifications / Technical Data	G124-G125
Dimensional Data	G126
Accessories	G127

GDL Series - Rails & Cassettes

Features	G130-G131
Ordering Information / Stroke Lengths	G132
Specification	G133
Dimensional Data	G134
Accessories	G135-G142

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

--Parker

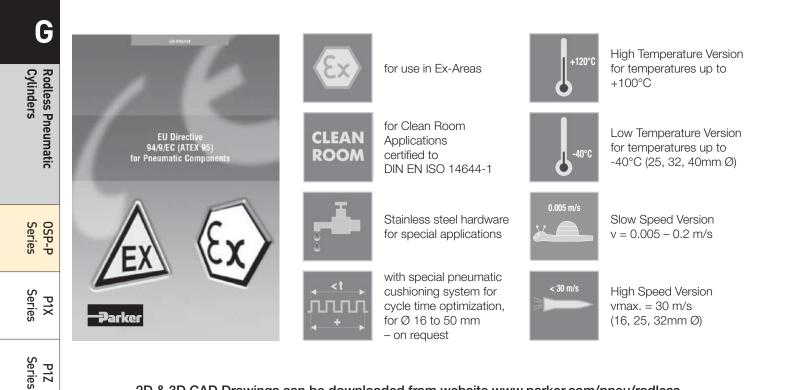
For inventory, lead time, and kit lookup, visit www.pdnplu.com

G

Catalog 0900P-6 The System Concept

PARKER-ORIGA rodless pneumatic cylinders are the first odless cylinders that have been approved for use in potentially explosive atmospheres in Equipment Group II, Category 2 GD

The Cylinders are to the ATEX Certification 94/9/EG (ATEX 95) for Pneumatic Components.


ATTen TiOn!

Contact PARKER-ORIGA for sizing software and/or technical assistance 877-321-4736

All dimensions are in European-Standard. Please convert all in US-Standard.

Conversion Table

Multiply	Ву	To Obtain
millimeters	.03937	inches
newtons	.2248	lbs.(F)
newton-meters	8.8512	in-lbs
kilograms	2.205	lbs.
inches	25.4	millimeters
lbs.(F)	4.448	newtons
in-lbs	.113	newtons-meters
lbs.	.45359	kilograms

2D & 3D CAD Drawings can be downloaded from website www.parker.com/pneu/rodless

For inventory, lead times, and kit lookup, visit www.pdnplu.com

One Concept – Pneumatic

Based on the ORIGA rodless cylinder, proven in world wide markets, PARKER-ORIGA now offers the complete pneumatic solution for linear systems. Designed for absolute reliability, high performance, ease of use and optimized engineering the ORIGA SYSTEM PLUS satisfies even the most demanding applications

ORiGA SYSTeM PLUS

is a totally modular concept which offers pneumatic actuation, with guidance options to suit the exact needs of individual installations.

The actuators at the core of the system all have a common aluminum extruded profile, with double dovetail mounting rails on three sides, these are the principle building blocks of the system to which all modular options are directly attached.

SYSTeM MODULARITY

• Pneumatic Drive

- For all round versatility and convenience, combining ease of control and broad performance capability. Ideally suited for point-to point operations, reciprocating movements and simple traverse / transfer applications.
- Different guidance options provide the necessary level of precision, performance and duty for various applications.
- Compact solutions, which are simple to install and can be easily retrofitted
- Valves and control options can be directly mounted to the actuator system.
- Diverse mounting options to provide total installation flexibilit .

Rodless Pneumatic Cylinders OSP-P Series

	Basic Linear Drive		Linear Guides	
	ō	STANDARD VERSION • OSP-P		SLIDELINE • OSP-P
	Air Connection on t	the end-face or both at One end		POWERSLIDE
		• OSP-P		• OSP-P
	Clean Room Cylind	er certified to in en iSO 146644-1		PROLINE
	0	Series OSP-P		• OSP-P
	Bi-parting Version		Statement .	STARLINE
		• OSP-P		• OSP-P
				KF - Recirculating Ball Bearing
	integrated 3/2 Way		1	• OSP-P
	B.	• OSP-P		HD - Heavy Duty • OSP-P
	Clevis Mounting			
G	and the second	OSP-P	intermediate Stop M	lodule
	St.		and the second	ZSM • OSP-P
dles	end Cap Mounting		Brakes	
Rodless Pneumatic Cylinders	Ō	• OSP-P		Active BrakesPassive Brakes
	Mid-Section Suppo	rt		
		OSP-P	Magnetic Switches	
OSP-P Series			- Faith	• OSP-P
	inversion Mounting		and the second s	
P1X Series	1	• OSP-P	Sen SOFLeX – Meas	uring System
P1X Series	Joint Clamp Conne	ction		• SFI-plus
P1Z Series		• OSP-P	Variable Stop VS	
GDL Series	Multiplex Connection	on • OSP-P		• OSP-P with Linear Guide STL, KF, HD
		For inventory, lead times, and kit lookup, visit www.pdnplu.com	G4	Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

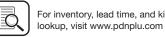
Catalog 0900P-6

Modular Components Overview

Rodless Pneumatic Cylinders OSP-P Series

Linear Drives	OSP-P10	OSP-P16	OSP-P25	OSP-P32	OSP-P40	OSP-P50	OSP-P63	OSP-P80
Specification								
Theoretical Force at 6 bar (N)	47	120	295	483	754	1178	1870	3010
Effective Force at 6 bar (N)	32	78	250	420	640	1000	1550	2600
Velocity v (m/s)	> 0.005	> 0.005	> 0.005	> 0.005	> 0.005	> 0.005	> 0.005	> 0.005
Magnetic Piston (three sides)								
Lubrication - Prelubricated								
Multiple Air Ports (4 x 90°)								
Both Air Connections at End-face		0	0	0	0	0	0	0
Air Connection on the End-face		0	0	0	0	0	0	0
Cushioning								
Cushioning Length (mm)	2,50	11	17	20	27	30	32	39
Stroke Length (mm)	1 - 5500	1 - 5500	1 - 5500	1 - 5500	1 - 5500	1 - 5500	1 - 5500	1 - 5500
Pressure Range pmax (bar)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
Temperature Range (°C) *	-10 - + 80	-10 - + 80	-10 - + 80	-10 - + 80	-10 - + 80	-10 - + 80	-10 - + 80	-10 - + 80
Fluorocarbon / Chemical Resistance	0	0	0	0	0	0	0	0
Stainless Steel Parts	0	0	0	0	0	0	0	0
Clevis Mounting	0	0	0	0	0	0	0	0
Slow Speed Lubrication	0	0	0	0	0	0	0	0
Duplex Connection / Multiplex Connection	0	on request	-	0	0	0	on request	
Tandem Piston	0	O	0	0	0	0	O	O
Basic Cylinder	0	U	U	U	U	U		0
F (N)	20	120	300	450	750	1200	1650	2400
(N) Mx (Nm)	0.2	0.45	1.5	3	6	1200	12	2400
My (Nm)	1	4	1.5	30	60	115	200	360
Mz (Nm)	0.3	0.5	3	5	8	15	24	48
SLiDeLine	0.2	0.2	-	5	Ŭ	10	-	10
F (N)		325	675	925	1500	2000	2500	2500
Mx (Nm)		6	14	29	50	77	120	120
My (Nm)		11	34	60	110	180	260	260
Mz (Nm)		11	34	60	110	180	260	260
PROLine		11	-	00	110	100	200	200
F (N)		542	857	1171	2074	3111		
(N) Мх (Nm)		8	16	29	57	111		
My (Nm)		0 12	39	73	158	249		
My (Nm) Mz (Nm)		12	39 39	73	158	249		
		12	39	10	100	249		
POWeRSLiDe			1400 -	1400 -		3000 -		
F (N)		1400	1400 - 3000	1400 - 3000	3000	3000 - 4000		
Mx (Nm)		14	14 - 65	20 - 65	65 - 90	90 - 140		
My (Nm)		45	63 - 175	70 - 175	175 - 250	250 - 350		
Mz (Nm)		45	63 - 175	70 - 175	175 - 250	250 - 350		
STARLine		TU	00 1.0	10 1.0		200 000		
F (N)		1000	3100	3100	4000-7500	4000-7500		
r (N) Mx (Nm)		15	50	62	150	210		
		30	110	160	400	580		
My (Nm)								
Mz (Nm)		30	110	160	400	580		
– Variable Stop		0	0	0	0	0		<u> </u>

= Standard Version


▲ = Longer Strokes on Request

* = Other Temperature Ranges on Request

O = Option

X = Not Applicable

For inventory, lead time, and kit

G5

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

P1X Series P1Z Series

GDL Series

0SP-P Series

Rodless Pneumatic Cylinders **OSP-P Series**

Linear Drives	OSP-P10	OSP-P16	OSP-P25	OSP-P32	OSP-P40	OSP-P50	OSP-P63	OSP-P80
KF Guide								
F (N)		1000	3100	3100	4000-7500	4000-7500		
Mx (Nm)		12	35	44	119	170		
My (Nm)		25	90	133	346	480		
Mz (Nm)		25	90	133	346	480		
– Variable Stop		0	О	0	0	О		
HD Heavy Duty Guide								
F (N)			6000	6000	15000	18000		
Mx (Nm)			260	285	8000	1100		
My (Nm)			320	475	1100	1400		
Mz (Nm)			320	475	1100	1400		
– Variable Stop			0	0	0	0		
 Intermediate Stop Module 			0					
Active Brake								
Braking Force at 6 bar (brake surface dry) (N)								
SLiDeLine SL / PROLine PL with B	rakes							
Active Brake								
SL Braking Force at 6 bar (brake surface dry) (N)			325	545	825	1200		
PL Braking Force at 6 bar (brake surface dry) (N)			on request	on request	on request	on request		
Passive Brake Multibrake								
SL Braking Force at 6 bar (brake surface dry) (N)			470	790	1200	1870	2900	2900
PL Braking Force at 6 bar (brake surface dry) (N)			315	490	715	1100		
Magnetic Switches								
Standard Version	0	0	0	0	0	0	0	0
T-Nut Version	0	0	0	0	0	0	0	0
Displacement Measuring Systems	-		-		-			
SFI-plus Incremental			0	0	0	0	0	0
integrated Valves 3/2 WV n O VOe			0	0	0	0	on request	on reques
Mountings								
End Cap Mounting / Mid-Section Support	0	0	0	0	0	0	0	0
Inversion Mounting		0	0	0	0	0	0	0
Shock Absorber for Intermediate Positioning			on request	on request	on request	on request		
Adaptor Profile / -Nut Profil		0	0	0	0	0		
Special Cylinders						-		
Special Pneumatical Cushioning System		on request						
Clean Room Cylinders to DIN EN ISO 14644-1		0	O	O				
Bi-parting Version					0			
High-Speed up to 30 m/s		on request	on request	on request				

Standard Version

▲ = Longer Strokes on Request

* = Other Temperature Ranges on Request

O = Option

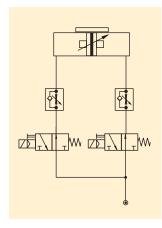
X = Not Applicable

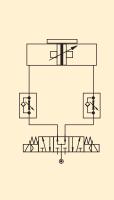
P1Z Series

G

Rodless Pneumatic Cylinders

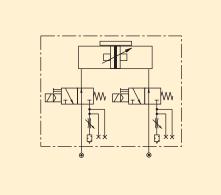
OSP-P Series

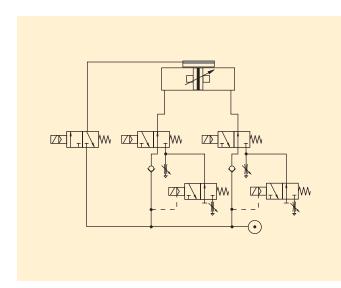

P1X Series



Catalog 0900P-6 **Examples**

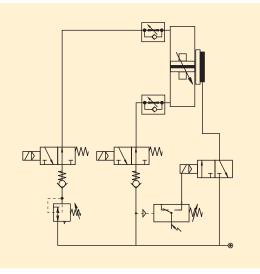
Rodless Pneumatic Cylinders **OSP-P Series**




Circuit diagram for end of stroke application. Intermediate positioning is also possible.

The cylinder is controlled by two 3/2-way valves (normally open). The speed can be adjusted independently for both directions. Circuit diagram for end of stroke application. Intermediate positioning is also possible.

The cylinder is controlled by a 5/3-way valve (middle position pressurized). The speed can be adjusted independently for both directions.

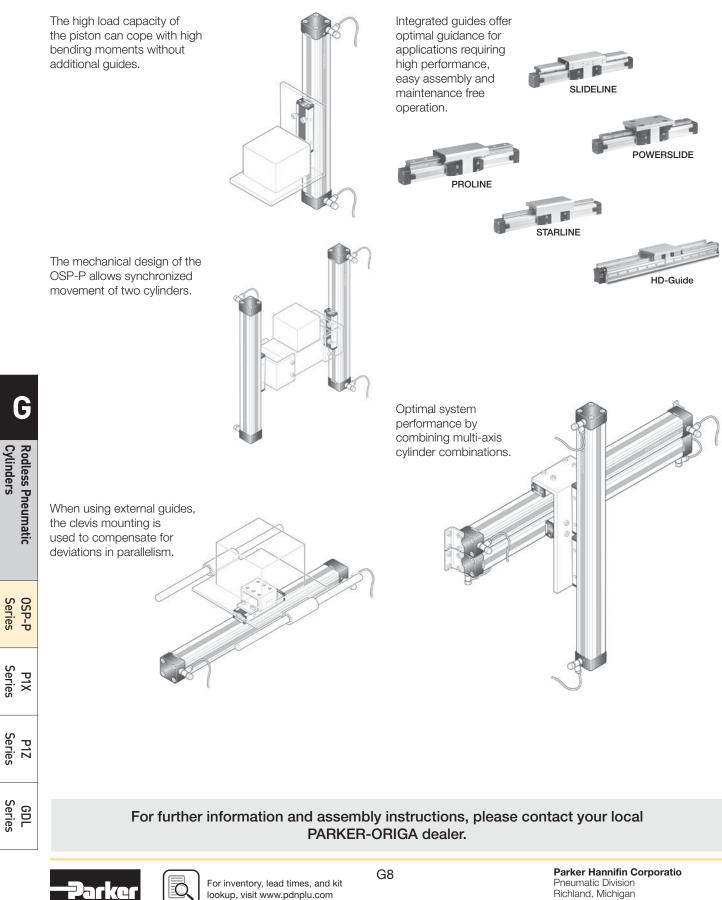


The optional integrated VOE Valves offer optimal control, and allow accurate positioning of intermediate positions and the lowest possible speeds.

Fast/Slow speed cycle control with pneumatic brake for accurate positioning at high velocities. Additional 3/2-way valves with adjustable throttle valves at the exhaust of the standard directional control valves for two displacement speeds in each direction of the piston's travel.

The valve controlling the brake is activated after the slow speed cycle is activated.

The combination of an OSP-cylinder with the passive MULTIBRAKE as shown here, allows accurate positioning and safety in case of loss of pneumatic air pressure.


P1Z Series

GDL Series

Examples

ORiGA SYSTeM PLUS – rodless linear drives offer maximum flexibility for any application.

Richland, Michigan www.parker.com/pneumatics

Series

Series

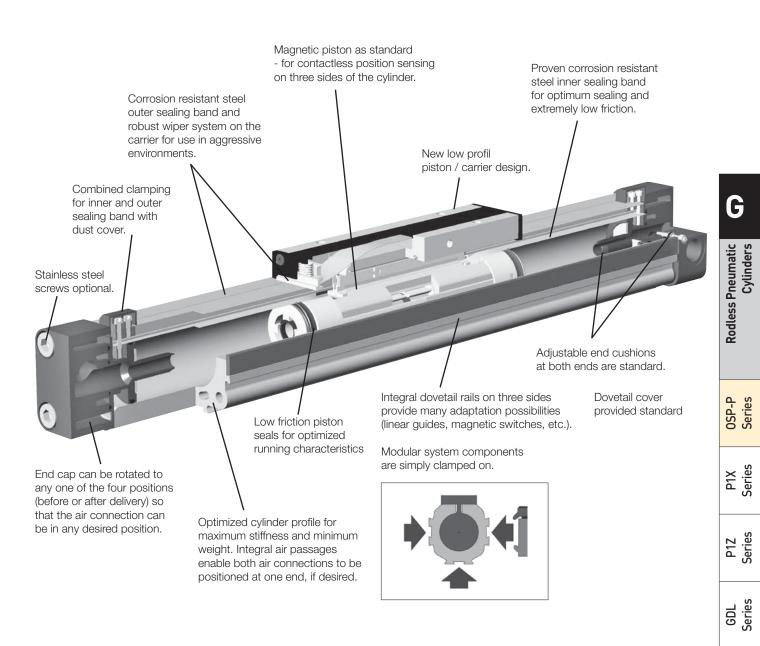
Features

OSP-P Series

A new generation of linear drives which can be simply and neatly integrated into any machine layout.

A new modular linear drive system

With this second generation linear drive the OSP-P series offers design engineers complete flexibilit .


The well known ORIGA cylinder has been further developed into a combined linear actuator, guidance and control package. It forms the basis for the OSP-P linear drive system.

All additional functions are designed into modular system components which replace the previous series of cylinders.

Mounting rails on 3 sides

Mounting rails on 3 sides of the cylinder enable modular components such as linear guides, brakes, valves, magnetic switches etc. to be fitted to the cylinder itself. This solves many installation problems, especially where space is limited.

The modular system concept forms an ideal basis for additional customer-specific functions

orker 🖸

For inventory, lead time, and kit lookup, visit www.pdnplu.com

G9

Features


Standard Features:

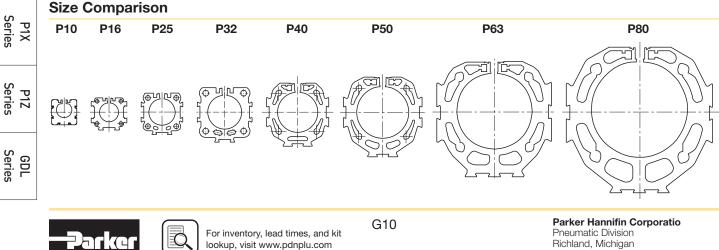
- Double-acting with adjustable cushions
- With magnetic piston for position sensing
- Standard stroke lengths to 5500mm, long stroke versions available upon request
- End cap can be rotated 4 x 90° to position ports as desired

Optional Features:

- Clean room cylinders
- Stainless steel screws
- Slow speed lubrication
- Fluorocarbon seals -14°F to 212°F (-10°C to 100°C)
- Single end porting
- Integrated valves
- Integrated bearing options

Rodless Pneumatic Cylinders OSP-P Series, Standard 10 to 80mm

Operating information


Operating pressure: Temperature range: Filtration requirements: 116 PSIG (8 bar) 14°F to 176°F (-10°C to 80°C) Filtered, nonlubricated compressed air

Material specification

Cylinder profil	Anodized aluminum
Carrier (piston)	Anodized aluminum
End caps	Aluminum, lacquered / plastic (P10)
Sealing bands	Corrosion resistant steel
Seals	NBR (Option: Fluorocarbon)
Screws	Galvanized steel Option: stainless steel
Dust covers, wipers	Composite

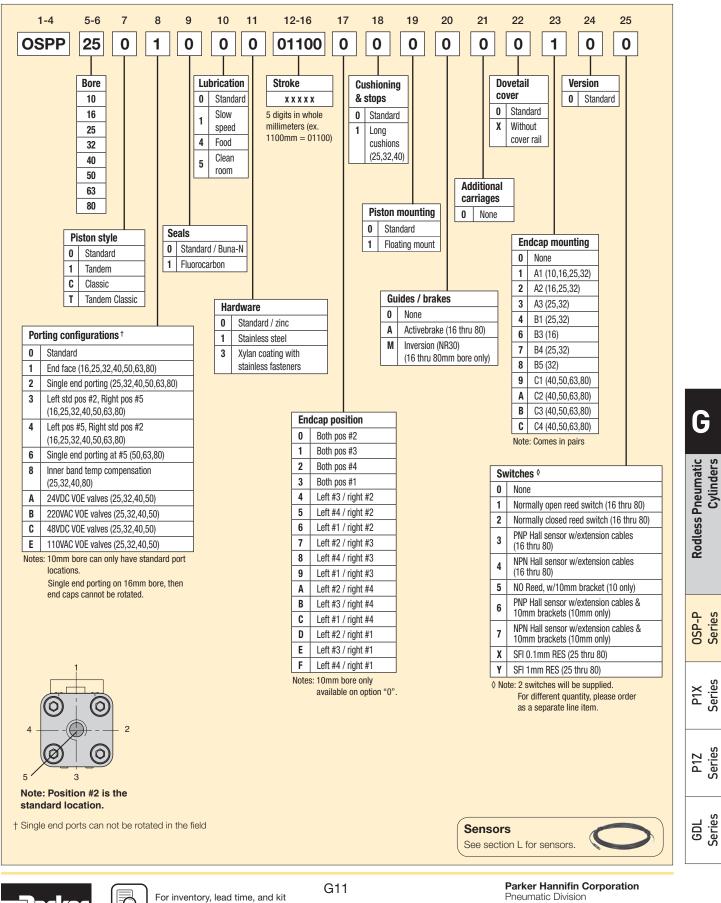
Weight (mass) kg

Cylinder series	Weight (Mass) kg					
(Basic cylinder)	at 0mm stroke	per 100mm stroke				
OSP-P10	0.087	0.052				
OSP-P16	0.22	0.1				
OSP-P25	0.65	0.197				
OSP-P32	1.44	0.354				
OSP-P40	1.95	0.415				
OSP-P50	3.53	0.566				
OSP-P63	6.41	0.925				
OSP-P80	12.46	1.262				

Richland, Michigan www.parker.com/pneumatics

Specification

G


Rodless Pneumatic Cylinders

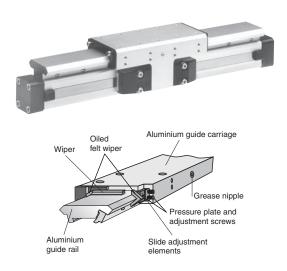
Series OSP-P

• Туре	Rodless cylinder
 Series 	OSP-P
 Stroke length 	5.5m (216 inches)
 System 	Double-acting, with cushions and magnetic piston
 Mounting 	See drawings
• Air connection	Threaded
 Weight (mass) 	See table
 Installation 	In any position
Lubrication	Prelubricated at the factory (additional oil mist lubrication not required)
Option:	special slow speed grease

Ordering information for OSP-P rodless standard pneumatic series

lookup, visit www.pdnplu.com

Pneumatic Division Richland, Michigan www.parker.com/pneumatics Cylinders


Options

Plain Bearing Guide SLiDeLine

Available on 16 to 80mm bore

Features:

- Adjustable composite slide elements - optional integral brake
- Integrated sealing system with wiper elements to remove dirt and lubricate the slideways
- Any length of stroke up to 5500mm

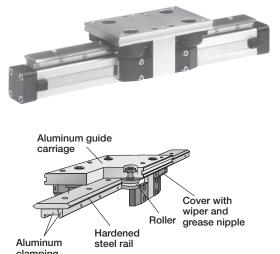
Roller Guide POWeRSLiDe

Available on 16 to 50mm bore

Features:

G

Rodless Pneumatic Cylinders


Series OSP-P

P1X Series

Series P1Z

GDL Series

- Anodized aluminum guide carriage with vee rollers
- Hardened steel guide rail
- Multiple guide sizes can be used on the same drive
- Max. Speed v = 3 m/s
- Integrated wiper and grease nipple
- Any length of stroke up to 3500mm

clamping rail

Other Options

PROLine

The compact aluminum roller guide for high loads and velocities and utilizes the GDL Guide Bearing

STARLine

Recirculating ball bearing guide for very high loads and precision

KF Guide

Recirculating ball bearing guide - the mounting dimensions correspond to FESTO Type: DGPL-KF

integrated VOe Valves

Sen SOFLeX SFi-plus Incremental measuring system with 0.1 (1.0) mm resolution

Variable Stop VS The variable stop provides simple stroke limitation Available on STARLINE, KF and Heavy duty guide

Clean Room Version Certified to DIN EN ISO 14644-

Rodless Cylinder

For synchronized bi-parting movements Available on SLIDELINE Guide Bearing only

P1Z Series

GDL Series

Heavy Duty Guide HD For heavy duty applications

G13

Loads, Forces and Moments

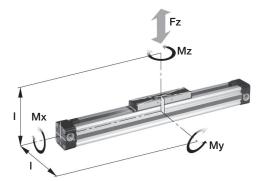
When sizing an OSP cylinder, consideration must be given to:

- Loads, forces and moments
- Performance of the pneumatic end cushions. The main factors are the mass to be cushioned and the piston speed (unless external cushioning is used, e.g. hydraulic shock absorbers)

To determine the maximum values for light, shock-free operation, which must not be exceeded even in dynamic operation.

Load and moment data are based on speeds v \leq 0.5 m/s.

When working out the action force required, it is essential to take into account the friction forces generated by the specific application or load.


The sum total of each of these types of moments, divided by each of the maximum values, determines a Load-Moment Factor (LMF) should be equal to or less than 1.0. On horizontal mountings, the total load (L) should also be divided by the maximum load allowable and factored into the equation.

Horizontal Mountings:

$$\frac{L}{[L]} + \frac{M}{[M]} + \frac{Ms}{[Ms]} + \frac{Mv}{[Mv]} = LMF \le 1.0$$

Vertical Mountings:

$$\frac{M}{[M]} + \frac{Ms}{[Ms]} + \frac{Mv}{[Mv]} = LMF \le 1.0$$

Bending moments are calculated from the center of the linear actuator

Cylinder Theoretical		Actual	Max. moments			– Max.	Cushion
series output force output for	output force F_A at 6 bar N (lb)	Mx Nm (in lb)	My Nm (in lb)	Mz Nm (in lb)	load F N (lb)	length (mm)	
OSP-P10	47 (10.6)	32 (7.2)	0.2 (1.8)	1 (8.9)	0.3 (2.7)	20 (4.5)	2.5 * (.09)
OSP-P16	120 (26.9)	78 (17.5)	0.45 (3.9)	4 (35.4)	0.5 (4.4)	120 (26.9)	11 (.43)
OSP-P25	295 (66.3)	250 (56.2)	1.5 (13.3)	15 (132.8)	3 (26.6)	300 (67.4)	17 (.67)
OSP-P32	483 (108.6)	420 (94.4)	3 (26.6)	30 (265.5)	5 (44.3)	450 (101.2)	20 (.79)
OSP-P40	754 (169.5)	640 (143.9)	6 (53.1)	60 (531)	8 (70.8)	750 (168.6)	27 (1.06)
OSP-P50	1178 (264.8)	1000 (224.8)	10 (88.5)	115 (1017.8)	15 (132.8)	1200 (269.8)	30 (1.18)
OSP-P63	1870 (420.4)	1550 (348.5)	12 (106.2)	200 (1771)	24 (212.4)	1650 (370.9)	32 (1.26)
OSP-P80	3016 (678)	2600 (584.5)	24 (212.4)	360 (3186)	48 (424.8)	2400 (539.5)	39 (1.54)

* A rubber element (non-adjustable) is used for end cushioning.

To deform the rubber element enough to reach the absolute end position would require a Δp of 4 bar!

Cushioning diagram

G

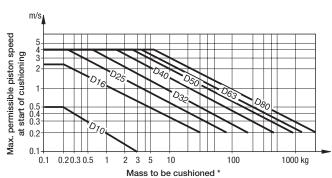
Rodless Pneumatic Cylinders

Series OSP-P

Series P1X

Series P1Z

GDL Series


Determine the moving mass and follow the chart below to determine the maximum cylinder velocity.

Alternatively, take your desired velocity and moving mass to determine the required cylinder diameter.

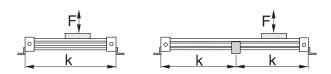
If these maximum permissible values are exceeded, additional shock absorbers must be used.

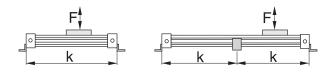
For sizing a basic cylinder, use the adjacent chart. To size a cylinder with guide bearing, use the charts on the following page.

The peak piston velocity can be determined by assuming it is 50% greater than the average velocity. The peak velocity should be used in sizing the cylinder cushions.

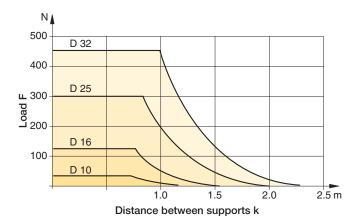
Includes piston mass.

* For cylinders with linear guides or brakes, please be sure to take the mass of the carriage or the brake housing into account.

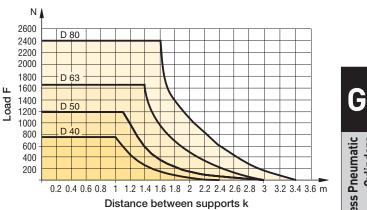

For inventory, lead times, and kit lookup, visit www.pdnplu.com


G14

Mid-Section Supports


To avoid excessive bending and oscillation of the cylinder, intermediate supports may be required. The diagrams below show the maximum permissible support spacing based upon load.

Bending up to 0.5 mm is permissible between supports. The mid-section supports are clamped on to the dovetail profile of the cylinder tube. They are also able to take the axial forces.



Basic cylinder 10 to 32mm bore mid-section supports

Basic cylinder 40 to 80mm bore mid-section supports

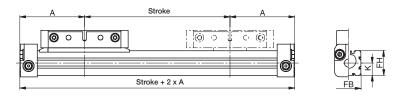
Catalog 0900P-6 Dimensional Data

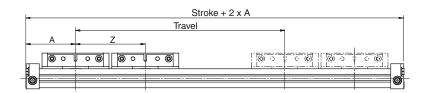
Rodless Pneumatic Cylinders **OSP-P Series, Standard 10mm**

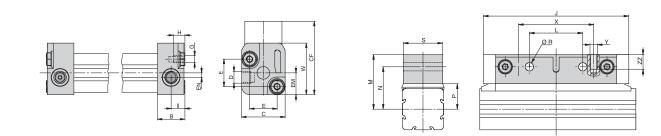
Cylinder Stroke and Dead Length A

- Free choice of stroke length up to 5500mm in 1mm steps.
- Longer strokes available on request.

Tandem Cylinder


Two pistons are fitted : dimension "Z" is optional. Please note minimum distance "Zmin".


- Free choice of stroke length up to 5500mm in 1mm steps.
- Longer strokes available on request.
- Stroke length to order is stroke + dimension "Z".


Please note:

To avaoid multiple actuation of magmetic switches, the second piston is not equipped with magnets.

Basic cylinder – 10mm bore

Dimensions (mm)

Series	А	в	с	D	Е	G	н	I	J	к	L	М	N	Р	R	s	w	х	Y	Zmin	CF	EM	EN	FB	FH	ZZ
OSP-P10	44.5	5 12	19	M5	12	M3	5	6	60	8.5	22	22.5	17.5	10.5	3.4	16	22.5	5 31	M3	64	32	9.5	2	17	17	6

G

Rodless Pneumatic Cylinders

C

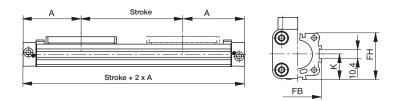
Catalog 0900P-6 Dimensional Data

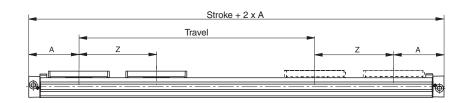
Rodless Pneumatic Cylinders OSP-P Series, Standard 16 to 80mm

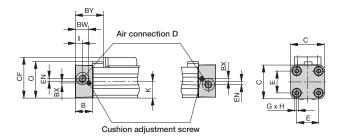
Cylinder Stroke and Dead Length A

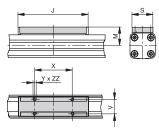
- Free choice of stroke length up to 5500mm in 1mm steps.
- Longer strokes available on request.

Tandem Cylinder


Two pistons are fitted : dimension "Z" is optional. Please note minimum distance "Zmin".


- Free choice of stroke length up to 5500mm in 1mm steps.
- Longer strokes available on request.
- Stroke length to order is stroke + dimension "Z".


Please note:


To avaoid multiple actuation of magmetic switches, the second piston is not equipped with magnets.

Basic cylinder - 16 to 80mm bore

Dimensions (mm)

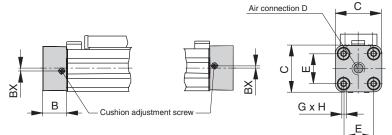
Series	А	В	С	D	Е	G	н	I	J	к	М	0	s	V	х	Y	z	BW	ΒХ	BY	CF	EN	FB	FH	ZZ	
OSP-P16	65	14	30	M5	18	M3	9	5.5	69	15	23	33.2	22	16.5	36	M4	81	10.8	1.8	28.4	38	3	30	27.2	7	Ч-0
OSP-P25	100	22	41	G1/8	3 27	M5	15	9	117	21.5	31	47	33	25	65	M5	128	17.5	2.2	40	52.5	3.6	40	39.5	8	0SP
OSP-P32	125	25.5	52	G1/4	136	M6	15	11.5	152	28.5	38	59	36	27	90	M6	170	20.5	2.5	44	66.5	5.5	52	51.7	1	
OSP-P40	150	28	69	G1/4	1 54	M6	15	12	152	34	44	72	36	27	90	M6	212	21	3	54	78.5	7.5	62	63	10	
OSP-P50	175	33	87	G1/4	170	M6	15	14.5	200	43	49	86	36	27	110	M6	251	27	_	59	92.5	11	76	77	10	P1X
OSP-P63	215	38	106	G3/8	3 78	M8	21	14.5	256	54	63	107	50	34	140	M8	313	30	-	64	117	12	96	96	16	
OSP-P80	260	47	132	G1/2	2 96	M10	25	22	348	67	80	133	52	36	190	M10	384	37.5	-	73	147	16.5	122	122	20	
																										1

G

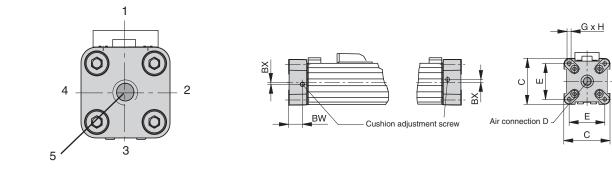
Rodless Pneumatic Cylinders

Series

Series



Air Connection on the end-Face #5


In some situations it is necessary or desirable to fit a special end cap with the air connection on the end-face instead of the standard end cap with the air connection on the side. The special end cap can also be rotated 4 x 90° to locate the cushion adjustment screw as desired.

Series OSP-P16 to P32

Series OSP-P40 to P80

note: Position #2 is the standard location.

Dimension (mm)

Se OS										
0SP-P Series	Dimension	(mm)								
0, 0	Series	В	С	D	Е	G	н	BX	BW	
	OSP-P16	14	30	M5	18	M3	9	1.8	10.8	
Se	OSP-P25	22	41	G1/8	27	M5	15	2.2	17.5	
P1X Series	OSP-P32	25.5	52	G1/4	36	M6	15	2.5	20.5	
	OSP-P40	28	69	G1/4	54	M6	15	3	21	
	OSP-P50	33	87	G1/4	70	M6	15	_	27	
P1Z Series	OSP-P63	38	106	G3/8	78	M8	21	-	30	
Z ies	OSP-P80	47	132	G1/2	96	M10	25	_	37.5	

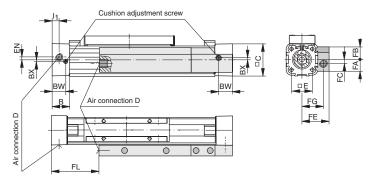
GDL Series

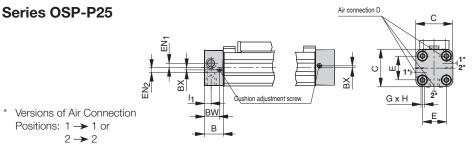
G

Rodless Pneumatic Cylinders

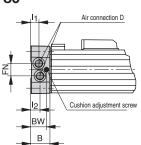
01

Single end Porting

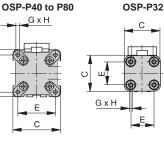

A special end cap with both air connections on one side is available for situations where shortage of space, simplicity of installation or the nature of the process make it desirable. Air supply to the other end is via internal air passages (OSP-P25 to P80) or via a hollow aluminum profile fitte externally (OSP-P16).


In this case the end caps cannot be rotated.

Please note:


When combining the OSP-P16 single end porting with inversion mountings, RS magnetic switches can only be mounted directly opposite to the external air-supply profile.

Series OSP-P16



Series OSP-P32 to P80

For inventory, lead time, and kit

lookup, visit www.pdnplu.com

Dimension (mm)

ЯП

	• •																			
Series	В	С	D	Е	G	н	11	12	BX	BW	EN	EN1	EN2	FA	FB	FC	FE	FG	FL	FN
OSP-P16	14	30	M5	18	MЗ	9	5.5	_	1.8	10.8	3	_	-	12.6	12.6	4	27	21	36	_
OSP-P25	22	41	G1/8	27	M5	15	9	_	2.2	17.5	-	3.6	3.9	_	_	-	_	_	_	_
OSP-P32	25.5	52	G1/8	36	M6	15	12.2	10.5	_	20.5	-	_	_	_	_	-	_	_	_	15.2
OSP-P40	28	69	G1/8	54	M6	15	12	12	_	21	-	_	_	_	_	-	_	_	_	17
OSP-P50	33	87	G1/4	70	M6	15	14.5	14.5	_		-	_	_	_	_	-	_	_	_	22
OSP-P63	38	106	G3/8	78	M8	21	16.5	13.5	_	30	-	_	-	_	_	-	_	-	_	25
OSP-P80	47	132	G1/2	96	M10	25	22	17	_	37.5	-	_	_	_	_	-	_	_	_	34.5

G19

υш

P1X OSP-P Series Series

P1Z Series

GDL Series

Parker Hannifin Corporatio

Pneumatic Division

Richland, Michigan www.parker.com/pneumatics

integrated 3/2 Way Valves VOe Series OSP-P25, P32, P40 and P50

For optimal control of the OSP-P cylinder, 3/2 way valves integrated into the cylinder's end caps can be used as a compact and complete solution.

They allow for easy positioning of the cylinder, smooth operation at the lowest speeds and fast response, making them ideally suited for the direct control of production and automation processes.

Characteristics:

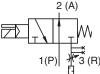
- · Complete compact solution
- Various connection possibilities: Free choice of air connection with rotating end caps with VOE valves, Air connection can be rotated 4 x 90°, Solenoid can be rotated 4 x 90°, Pilot Valve can be rotated 180°
- High piston velocities can be achieved with max. 3 exhaust ports
- Minimal installation requirements
- Requires just one air connection per valve
- Optimal control of the OSP-P cylinder
- Excellent positioning characteristics
- Integrated operation indicator
- Integrated exhaust throttle valve
- Manual override indexed
- Adjustable end cushioning
- Easily retrofitted please note the inc ease in the overall length of the cylinder!

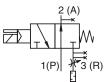
electrical

P → A open, R closed

integrated in end cap

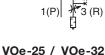
in any position


G 1/8 VOE-25


Poppet valve, non overlapping

Operating information

Operating pressure: Temperature range: Filtration requirements: 116 PSIG (8 bar) -14°F to 122°F (10°C to 50°C) Filtered, nonlubricated compressed air


Specification

- Characteristics 3/2 Way Valves with spring return
- Actuation
- Basic position
- Type
- Mounting
- Installation

• Port size

- G 3/8 VOE-40
- Temperature -10°C to 50°C * 2-8 bar
- Operating pressure
- 24 V DC / 230 V AC, 50 Hz Nominal voltage
- Power consumption 2,5 W / 6 VA
- Duty cycle
- 100% • Electrical Protection IP65 DIN 40050

* Other temperature ranges on request

VOe-40 / VOe-50

For inventory, lead times, and kit lookup, visit www.pdnplu.com

G 1/4 VOE-32

G 3/8 VOE-50

G20

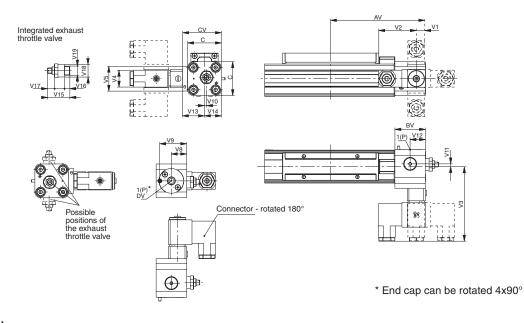
Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

Series P1Z

GDL Series

G

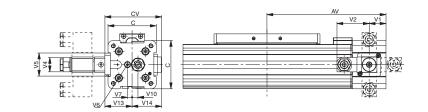
Rodless Pneumatic

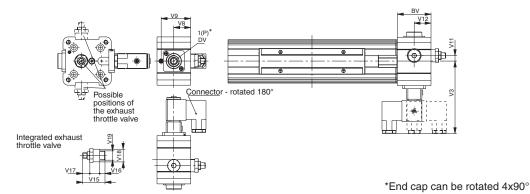

Cylinders

Series

Series P1X

OSP-P


Dimensions VOe Valves OSP-P25 and P32



Dimension (mm)

Series	AV	BV	С	CV	DV	V1	V2	V3	V4	V5	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19
OSP-P25	115	37	41	47	G1/8	11	46	90.5	22	30	18.5	32.5	2.5	3.3	18.5	26.5	20.5	24	5	4	14	G1/8
OSP-P32	139	39.5	52	58	G1/4	20.5	46	96	22	32	20.5	34.7	6	5	20.5	32	26	32	7.5	6	18	G1/4

Dimensions VOe Valves OSP-P40 and P50

Dimension (mm)

Series	AV	вv	с	с٧	DV	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	
OSP-P40	170	48	69	81	G3/8	24	46	103	22	33	M5	6.7	24	42	8.3	8.3	24	39	42	32	7.5	6	18	G1/4	GDI
OSP-P50	190	48	87	82	G3/8	24	46	102	22	33	M5	4.5	24	42	12.2	12.2	24	38	44	32	7.5	6	18	G1/4	

G21

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics G

Rodless Pneumatic Cylinders

0SP-P Series

P1X Series

P1Z Series

Series

Active Brake

Series AB 25 to 80 for linear drive

- Series OSP-P
- Can be used with Sensofle

Features:

- Actuated by pressurization
- Released by spring actuation
- Completely stainless version
- Holds position, even under changing load conditions

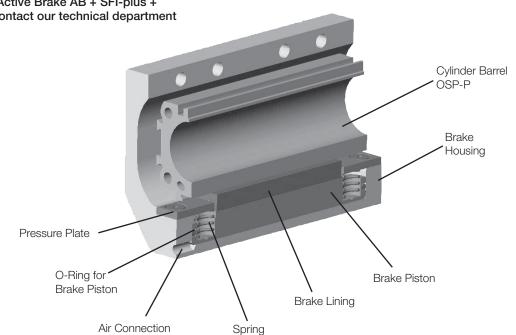
For further technical data, please refer to the data sheets for linear drives OSP-P (page G10)

Note:

G

Rodless Pneumatic Cylinders

OSP-P Series


P1X Series

P1Z Series

GDL Series

For combinations Active Brake AB + SFI-plus + Magnetic Switch contact our technical department please.

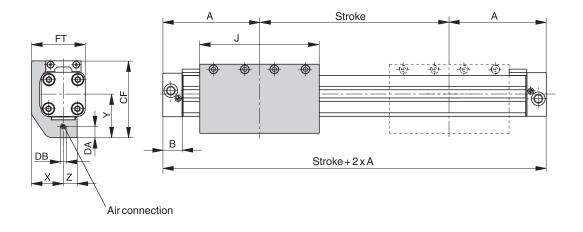
Forces and Weights

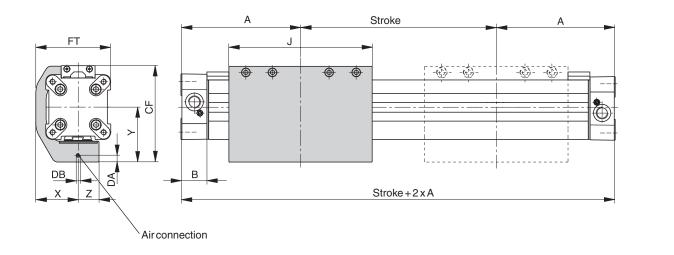
					Mass (kg)			
,			Max. braking		Linear drive	e with brake		Part number
	Series	For linear drive	force (N) †	Brake pad way (mm)	0 mm stroke	increase per 100mm stroke	Brake*	Active brake (includes carriage)
,	AB 25	OSP-P25	350	2.5	1.0	0.197	0.35	20806FiL
	AB 32	OSP-P32	590	2.5	2.02	0.354	0.58	20807FiL
	AB 40	OSP-P40	900	2.5	2.83	0.415	0.88	20808FiL
	AB 50	OSP-P50	1400	2.5	5.03	0.566	1.50	20809FiL
!	AB 63	OSP-P63	2170	3.0	9.45	0.925	3.04	20810FiL
	AB 80	OSP-P80	4000	3.0	18.28	1.262	5.82	20811FiL

† - at 6 bar both chambers pressurized with 6 bar Braking surface dry

- oil on the braking surface will reduce the braking force

Please Note:


The mass of the brake has to be added to the total moving mass when using the cushioning diagram.



G22

Series OSP-P25 and P32 with Active Brake AB

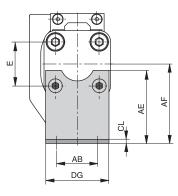
Series OSP-P40, P50, P63, P80 with Active Brake AB

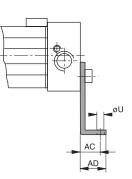
Dimensio	n (mm)										OSP-P Series
Series	А	В	J	х	Y	Z	CF	DA	DB	FT	
AB 25	100	22	117	29.5	43	13	74	4	M5	50	P1X eries
AB 32	125	25.5	151.4	36	50	15	88	4	M5	62	Ser P
AB 40	150	28	151.4	45	58	22	102	7	M5	79.5	
AB 50	175	33	200	54	69.5	23	118.5	7.5	M5	97.5	
AB 63	215	38	256	67	88	28	151	9	G1/8	120	P1Z Series
AB 80	260	47	348	83	105	32	185	10	G1/8	149	Sel P
											1

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics GDL Series

end Cap Mountings

On the end-face of each cylinder end cap there are four threaded holes for mounting the cylinder. The hole layout is square, so that the mounting can be fitted to the bottom, top or either side.


Series OSP - P25 and P32 with Active Brake AB: Type A3


Material:

Galvanized steel

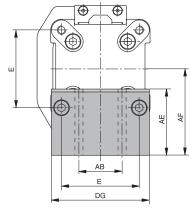
The mountings are supplied in pairs.

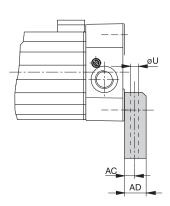
Series OSP - P40 , P50, P63, P80 with Active Brake AB: Type C3

Material:

G

Rodless Pneumatic Cylinders


OSP-P Series


P1X Series

P1Z Series Anodized aluminum

The mountings are supplied in pairs. Stainless steel version on request.

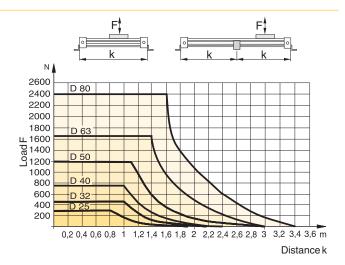
Dimension (mm)

											Part numb	er
	Series	Е	øU	AB	AC	AD	AE	AF	CL	DG	Type A3	Туре СЗ
	AB 25	27	5.8	27	16	22	45	49	2.5	39	2060FiL	-
	AB 32	36	6.6	36	18	26	42	52	3	50	3060FiL	-
2	AB 40	54	9	30	12.5	24	46	60	_	68	-	20339FiL
	AB 50	70	9	40	12.5	24	54	72	-	86	-	20350FiL
	AB 63	78	11	48	15	30	76	93	-	104	-	20821FiL
	AB 80	96	14	60	17.5	35	88	110	_	130	-	20822FiL

GDL AB 8

Mid-Section Supports

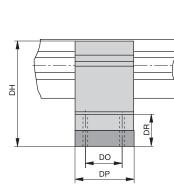
Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive.

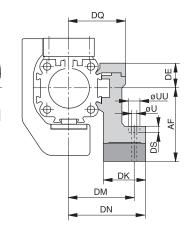

The diagrams show the maximum permissible unsupported length in relation to loading. Deflection of 0.5mm max. between supports is permissible.

The Mid-Section supports are attached to the dovetail rails, and can take axial loads.

Note to Type E3:

Mid-Section supports can only be mounted opposite of the brake housing.


Stainless steel version available on request.



Series OSP-P25 to P80 with Active Brake AB: Type e3

(Mounting from above / below with through-bolt)

Dimension (mm)

Series	U	UU	AF	DE	DH	DK	DM	DN	DO	DP	DQ	DR	DS	Type E3 part number
AB 25	5.5	10	49	16	65	26	40	47.5	36	50	34.5	35	5.7	20353FiL
AB 32	5.5	10	52	16	68	27	46	54.5	36	50	40.5	32	5.7	20356FiL
AB 40	7	_	60	23	83	34	53	60	45	60	45	32	_	20359FiL
AB 50	7	_	72	23	95	34	59	67	45	60	52	31	_	20362FiL
AB 63	9	_	93	34	127	44	73	83	45	65	63	48	_	20453FiL
AB 80	11	_	110	39.5	149.5	63	97	112	55	80	81	53	_	20819FiL

Accessories for linear drives with Active Brakes - please order separately

Description	For detailed information, see page no.
Clevis mounting	F27
Adaptor profil	F31
T-groove profil	F32
Connection profil	F33
Magnetic switch (can only be mounted opposite of the brake housing)	F87-F92
Incremental displacement measuring system SFI-plus	F95-F97

G

P1X Series

P1Z Series

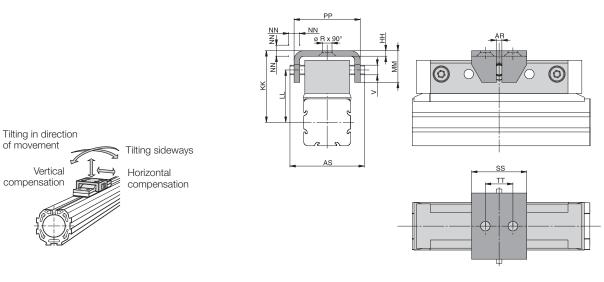
G25

Accessories

Clevis Mount ø 10mm

For Linear-drive

• Series OSP-P


When external guides are used, parallelism deviations can lead to mechanical strain on the piston. This can be avoided by the use of a clevis mounting.

In the drive direction, the mounting has very little play.

Freedom of movement is provided as follows:

- Tilting in direction of movement
- Vertical compensation
- Tilting sideways
- Horizontal compensation

OSP-P Series

G

Dimension (mm)

													Part numbe	r
Series	ø R	V	AR	AS	HH	KK	LL	MM	NN*	PP	SS	TT	Standard	Stainless
OSP-P10	3.4	3.5	2	27	2	26	19	11.5	1	24	20	10	20971FiL	-

* Dimension NN gives the possible plus and minus play in horizontal and

vertical movement, which also makes tilting sideways possible.

Accessories

Clevis Mount ø 16 to 80mm

For Linear-drive

• Series OSP-P

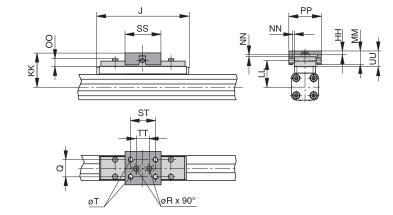
When external guides are used, parallelism deviations can lead to mechanical strain on the piston. This can be avoided by the use of a clevis mounting.

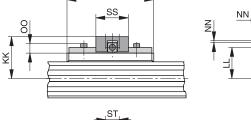
In the drive direction, the mounting has very little play.

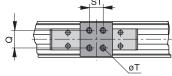
Freedom of movement is provided as follows:

- Tilting in direction of movement
- Vertical compensation
- · Tilting sideways
- Horizontal compensation

Series OSP-P16 to 32


A stainless steel version is also available.




Tilting in direction of movement Tilting sideways Vertical Horizontal compensation compensation

Please note: When using additional inversion mountings, take into account the dimensions in page G28.

Series OSP-P40 to 80

Dimension (mm)

																Part numbe	er	
Series	J	Q	т	ø R	HH	KK	LL	MM	NN*	00	PP	SS	ST	TT	UU	Standard	Stainless	
OSP-P16	69	10	M4	4.5	3	34	26.6	10	1	8.5	26	28	20	10	11	20462FiL	20463FiL	
OSP-P25	117	16	M5	5.5	3.5	52	39	19	2	9	38	40	30	16	21	20005FiL	20092FiL	
OSP-P32	152	25	M6	6.6	6	68	50	28	2	13	62	60	46	40	30	20096FiL	20094FiL	
OSP-P40	152	25	M6	_	6	74	56	28	2	13	62	60	46	_	30	20024FiL	20093FiL	
OSP-P50	200	25	M6	_	6	79	61	28	2	13	62	60	46	_	30	20097FiL	20095FiL	
OSP-P63	256	37	M8	-	8	100	76	34	3	17	80	80	65	_	37	20466FiL	20467FiL	
OSP-P80	348	38	M10	-	8	122	96	42	3	16	88	90	70	_	42	20477FiL	20478FiL	
-																		

* Dimension NN gives the possible plus and minus play in horizontal and vertical movement, which also makes tilting sideways possible.

G27

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

OSP-P Series

P1X Series

P1Z Series

GDL Series

inversion Mount ø 16 to 80mm

For Linear-drive

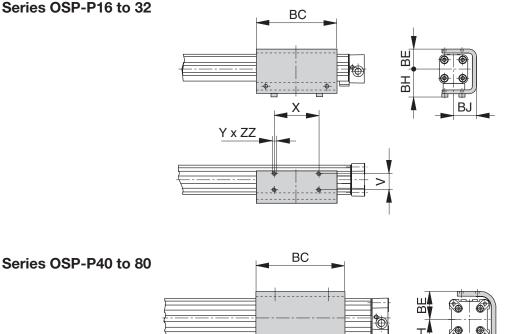
• Series OSP-P

ORIGA ORIGA SYSTEM al space PLUS

In dirty environments, or where there are special space problems, inversion of the cylinder is recommended.

The inversion bracket transfers the driving force to the opposite side of the cylinder. The size and position of the mounting holes are the same as on the standard cylinder.

Please note:


Other components of the OSP system such as mid-section supports, magnetic switches and the external air passage for the P16, can still be mounted on the free side of the cylinder.

When combining single end porting with inversion mountings,

RS magnetic switches can only be mounted directly opposite to the external air-supply profile

Important Note:

May be used in combination with Clevis Mounting, reference dimensions in pages G32-G33.

Series

Series

G

)	BC	
	Y x ZZ	

Dimension (mm)

	•	,								
Τ	Series	V	Х	Y	BC	BE	BH	BJ	ZZ	Part number
71	OSP-P16	16.5	36	M4	69	23	33	25	4	20446FiL
	OSP-P25	25	65	M5	117	31	44	33.5	6	20037FiL
	OSP-P32	27	90	M6	150	38	52	39.5	6	20161FiL
	OSP-P40	27	90	M6	150	46	60	45	8	20039FiL
GD	OSP-P50	27	110	M6	200	55	65	52	8	20166FiL
ř	OSP-P63	34	140	M8	255	68	83.5	64	10	20459FiL
	OSP-P80	36	190	M10	347	88	107.5	82	15	20490FiL

G28

Parker Hannifin Corporatio Pneumatic Division

Richland, Michigan www.parker.com/pneumatics

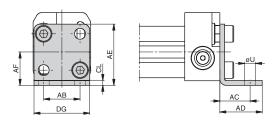
end Cap Mounting ø 10 to 80mm

For Linear-drive

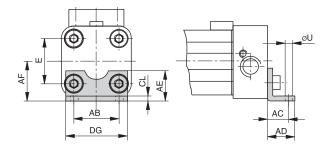
• Series OSP-P

On the end-face of each end cap there are four threaded holes for mounting the actuator.

The hole layout is square, so that the mounting can be fitted to the bottom, top or either side, regardless of the position chosen for the air connection.

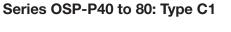

Material:

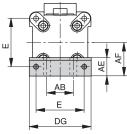
Series OSP-P10 – P32:	Galvanized steel.
Series OSP-P40 – P80:	Anodized aluminum.

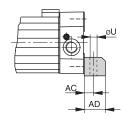

The mountings are supplied in pairs.

Series OSP-P10: Type A1

Series OSP-P16 to 32: Type A1




Dimension (mm)


	. ,									Part numbe	er (pair)
Series	Е	ØU	AB	AC	AD	AE	AF	CL	DG	Type A1	Type C1
OSP-P10	-	3.6	12	10	14	20.2	11	1.6	18.4	0240	-
OSP-P16	18	3.6	18	10	14	12.5	15	1.6	26	20408FiL	-
OSP-P25	27	5.8	27	16	22	18	22	2.5	39	2010	-
OSP-P32	36	6.6	36	18	26	20	30	3	50	3010	-
OSP-P40	54	9	30	12.5	24	24	38	-	68	-	4010FiL
OSP-P50	70	9	40	12.5	24	30	48	-	86	-	5010FiL
OSP-P63	78	11	48	15	30	40	57	-	104	-	6010FiL
OSP-P80	96	14	60	17.5	35	50	72	_	130	-	8010FiL

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

OSP-P Series

P1X Series

P1Z Series

GDL Series

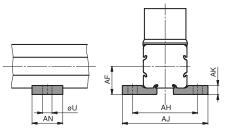
Mid-Section Support ø 10 to 80mm

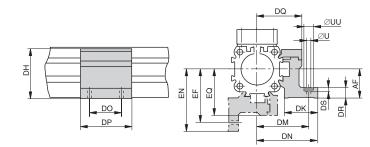
For Linear-drive

Series OSP-P

(P16 - P80):

The mid-section support can also be mounted on the underside of the actuator, in which case its distance from the center of the actuator is different.

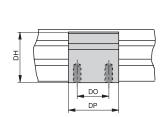

Stainless steel version on demand.

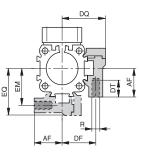

note on Types e1 and D1

Series OSP-10, Type e1

(Mounting from above / below using a cap screw)

(Mounting from above / below using a cap screw)





Series OSP-16 to 80, Type D1

(Mountings from below with 2 screws)

Series OSP-P16 to P80: Type e1

Dimension (mm)

		•	,								Par	t num	ber									
S_	Series	U	A	١F	AH	A	J	AK	AN	1	Тур	e E1	Ту	pe D1	I							
P1X eries	OSP-P10	3.6	1	1	25.4	4 3	3.4	3.5	12		025	0	-									
S																					Part numbe	er
	Series	R	U	UU	AF	DF	DH	DK	DM	DN	DO	DP	DQ	DR	DS	DT	EF	EM	EN	EQ	Type E1	Type D1
Se T	OSP-P16	М3	3.4	6	15	20	29.2	24	32	36.4	18	30	27	6	3.4	6.5	32	20	36.4	27	20435FiL	20434FiL
P1Z Series	OSP-P25	M5	5.5	10	22	27	38	26	40	47.5	36	50	34.5	8	5.7	10	41.5	28.5	49	36	20009FiL	20008FiL
S	OSP-P32	M5	5.5	10	30	33	46	27	46	54.5	36	50	40.5	10	5.7	10	48.5	35.5	57	43	20158FiL	20157FiL
	OSP-P40	M6	7	-	38	35	61	34	53	60	45	60	45	10	_	11	56	38	63	48	20028FiL	20027FiL
SeG	OSP-P50	M6	7	-	48	40	71	34	59	67	45	60	52	10	_	11	64	45	72	57	20163FiL	20162FiL
GDL Series	OSP-P63	M8	9	-	57	47.5	91	44	73	83	45	65	63	12	_	16	79	53.5	89	69	20452FiL	20451FiL
0,	OSP-P80	M10	11	-	72	60	111.5	63	97	112	55	80	81	15	-	25	103	66	118	87	20482FiL	20480FiL

אהגי

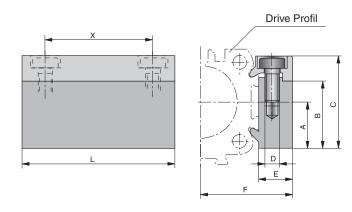
G30

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

Series OSP-P

Adaptor Profile ø 16 to 50m

For Linear-drive


• Series OSP-P

Adaptor Profile OSP

- A universal attachment for mounting of valves etc.
- Solid material

Dimension (mm)

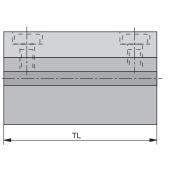
									Part number		
Series	А	В	С	D	Е	F	L	Х	Standard	Stainless	_
OSP-P16	14	20.5	28	M3	12	27	50	38	20432FiL	20438FiL	
OSP-P25	16	23	32	M5	10.5	30.5	50	36	20006FiL	20186FiL	
OSP-P32	16	23	32	M5	10.5	36.5	50	36	20006FiL	20186FiL	
OSP-P40	20	33	43	M6	14	45	80	65	20025FiL	20267FiL	
OSP-P50	20	33	43	M6	14	52	80	65	20025FiL	20267FiL	

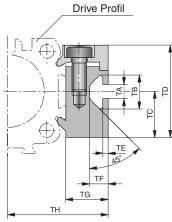
Rodless Pneumatic Cylinders

GDL Series

T-Slot Profile ø 16 to 50m

For Linear-drive


• Series OSP-P

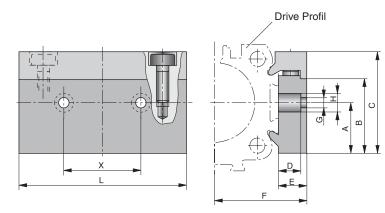

T-Slot Profile OSP

• A universal attachment for mounting with standard T-Nuts

Dimension (mm)

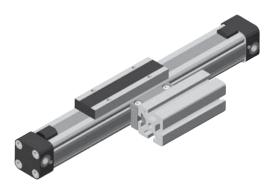
0 7											Part number	
Rod Cyli	Series	TA	ТВ	тс	TD	TE	TF	TG	тн	TL	Standard	Stainless
dless	OSP-P16	5	11.5	14	28	1.8	6.4	12	27	50	20433FiL	20439FiL
i Pn rs	OSP-P25	5	11.5	16	32	1.8	6.4	14.5	34.5	50	20007FiL	20187FiL
leur	OSP-P32	5	11.5	16	32	1.8	6.4	14.5	40.5	50	20007FiL	20187FiL
eumatic	OSP-P40	8.2	20	20	43	4.5	12.3	20	51	80	20026FiL	20268FiL
ic	OSP-P50	8.2	20	20	43	4.5	12.3	20	58	80	20026FiL	20268FiL

G


Connection Profile ø 16 to 50m

For combining

- Series OSP-P with system profile
- Series OSP-P with Series OSP-P



Dimension (mm)

	()											
Cylinder Series	For mounting on the carrier of	A	в	С	D	E	F	G	н	L	х	Part number
OSP-P16	OSP25	14	20.5	28	8.5	12	27	5.5	10	50	25	20849FiL
OSP-P25	OSP32-50	16	23	32	8.5	10.5	30.5	6.6	11	60	27	20850FiL
OSP-P32	OSP32-50	16	23	32	8.5	10.5	36.5	6.6	11	60	27	20850FiL
OSP-P40	OSP32-50	20	33	43	8	14	45	6.6	11	60	27	20851FiL
OSP-P50	OSP32-50	20	33	43	8	14	52	6.6	11	60	27	20851FiL

Possible Combinations

Combination of Series OSP-P with system profile

Combination of Series OSP-P with Series OSP-P

GDL Series

G33

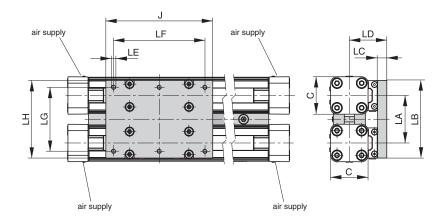
Accessories

Joint Clamp Connection ø 25 to 50mm

For connection of cylinders of the Series OSP-P

The joint clamp connection combines two OSP-P cylinders of the same size into a compact unit with high performance.

Features


- Increased load and torque capacity
- Higher driving forces

Included in delivery:

- 2 clamping profiles with sc ews
- 1 mounting plate with fixing

Dimension (mm)

	• •										
Series	С	J	LA	LB	LC	LD	LE	LF	LG	LH	Part number
OSP-P25	41	117	52	86	10	41	M5	100	70	85	
OSP-P32	52	152	64	101	12	50	M6	130	80	100	
OSP-P40	69	152	74	111	12	56	M6	130	90	110	 Consult factory
OSP-P50	87	200	88	125	12	61	M6	180	100	124	

G

Accessories

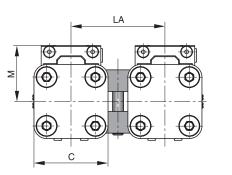
Multiplex Connection ø 25 to 50mm

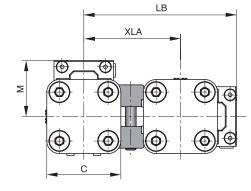
For connection of cylinders of the Series OSP-P

The multiplex connection combines two or more OSP-P cylinders of the same size into one unit.

Features

• The orientation of the carriers can be freely selected


Included in delivery:


installation:

Top carrier/Top carrier

2 clamping profiles with clamping sc ews

Top carrier/Side carrier

Dimension (mm)

Series	С	М	LA	LE	XLA	Part number
OSP-P25	41	31	52	84.5	53.5	
OSP-P32	52	38	64	104.5	66.5	O
OSP-P40	69	44	74	121.5	77.5	Consult factory
OSP-P50	87	49	88	142.5	93.5	

P1X Series

P1Z Series

GDL Series

Features

Clean Room Cylinder ø 16 - 32 mm Rodless Cylinder certified to in en iSO 14644-1

Standard Features:

- Double-acting with adjustable end cushioning
- With magnetic piston for position sensing
- Clean Room classification ISO Class 4 at vm = 0.14 m/s ISO Class 5 at vm = 0.5 m/s
- Suitable for smooth slow speed operation up to vmin = 0.005 m/s
- Optional stroke length up to 1200mm (longer strokes on request)
- Low maintenance
- Compact design with equal force and velocity in both directions
- Aluminum piston with bearing rings to support high direct and cantilever loads
- Stainless steel screws

Optional Features:

- Slow speed lubrication
- Fluorocarbon (FKM) seals

Operating information

Operating pressure: Temperature range: Filtration requirements: 116 PSIG (8 bar) 14°F to 176°F (10°C to 80°C) Filtered, nonlubricated compressed air

Specification
opecification

• Type Rodless cylinder OSP-P Series Stroke length 5.5m (216 inches) Double-acting, with cushioning, • System position sensing capability See drawings Mounting Threaded • Air connection Weight (mass) See table Installation In any position Lubrication Prelubricated at the factory (additional oil mist lubrication not required) • Option: special slow speed grease

Material specification

Cylinder profil	Anodized aluminum
Carrier (piston)	Anodized aluminum
End caps	Aluminum, lacquered
Sealing bands	Corrosion resistant steel
Seals	NBR (Option: Fluorocarbon)
Screws	Stainless steel
Covers	Anodized aluminum
Guide plate	Plastic

Weight (mass) kg

Cylinder series	Weight (Mass) kg	
(Basic cylinder)	at 0mm stroke	per 100mm stroke
OSP-P16	0.22	0.1
OSP-P25	0.65	0.197

P1Z Series

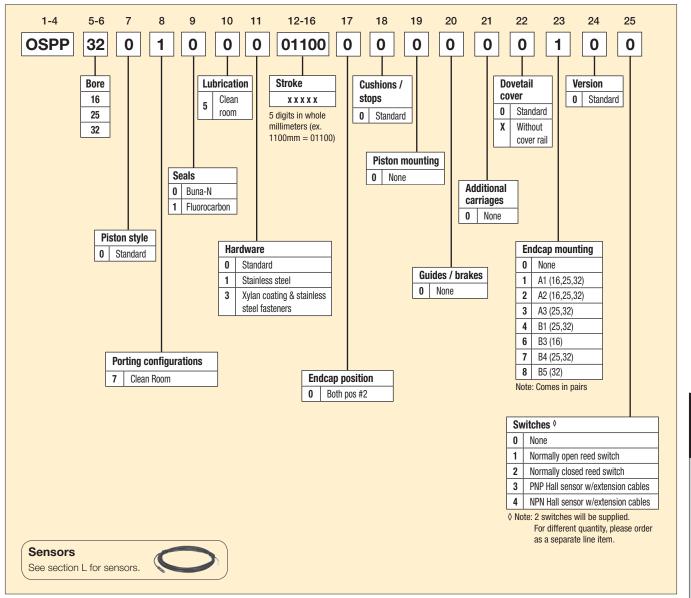
OSP-P Series

G

Rodless Pneumatic Cylinders

P16

Size Comparison



GDL Series

G36

Ordering information for OSP-P rodless Clean Room pneumatic series

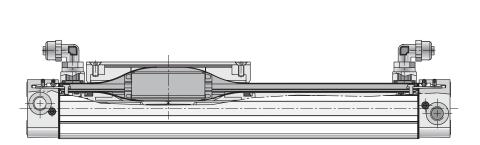
0SP-P Series

P1X Series

P1Z Series

GDL Series

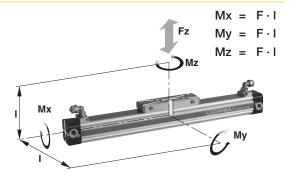
G


Certificatio

Based on the PARKER-ORIGA rodless cylinder, proven in world wide markets, PARKER-ORIGA now offers the only rodless cylinder on the market with a certification f om IPA Institute for the clean room specification acco ding to DIN EN ISO 14644-1.

Function

The clean room cylinders of the ORIGA SYSTEM PLUS (OSP-P) combines the efficiency of the ARKER-ORIGA slot seal system with vacuum protection against progressive wear and contamination from the sliding components. A partial vacuum drawn between inner and outer sealing bands prevents emission into the clean room. To achieve the necessary vacuum a suction flow of ca. 4 ³/h is required.



Loads, Forces and Moments

_	Cylinder Series	Effective Force at	Max. Mom	ent		_ Max. Load	Cushion length
	(mm Ø)	6 bar (N)	Mx (Nm)	My (Nm)	Mz (Nm)	Fz (N)	(mm)
	OSP-P16	78	0.45	4	0.5	120	11
	OSP-P25	250	1.5	15	3.0	300	17
	OSP-P32	420	3.0	30	5.0	450	20

Load and moment data are based on speeds $v \le 0.2$ m/s.

The adjacent table shows the maximum values for light, shock-free operation which must not be exceeded even in dynamic operation.

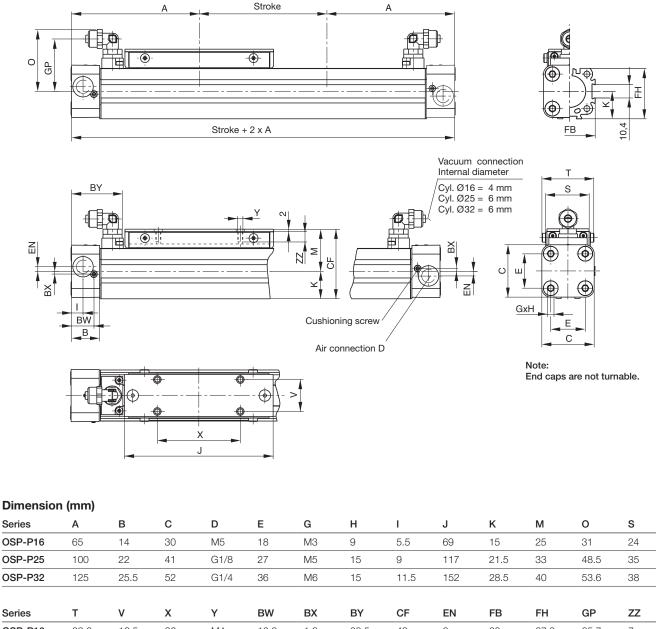
G

Rodless Pneumatic Cylinders

OSP-P Series

P1X Series

P1Z Series



For inventory, lead times, and kit lookup, visit www.pdnplu.com

G38

Clean Room Cylinders ø 16-32 mm

	· · /												
Series	А	В	С	D	Е	G	н	I	J	К	Μ	0	S
OSP-P16	65	14	30	M5	18	M3	9	5.5	69	15	25	31	24
OSP-P25	100	22	41	G1/8	27	M5	15	9	117	21.5	33	48.5	35
OSP-P32	125	25.5	52	G1/4	36	M6	15	11.5	152	28.5	40	53.6	38
Series	т	V	Х	Y	BW	BX	BY	CF	EN	FB	FH	GP	ZZ
OSP-P16	29.6	16.5	36	M4	10.8	1.8	28.5	40	3	30	27.2	25.7	7
OSP-P25	40.6	25	65	M5	17.5	2.2	40.5	54.5	3.6	40	39.5	41	8
OSP-P32	45	27	90	M6	20.5	2.5	47.1	68.5	5.5	52	51.7	46.2	10

GDL Series

0SP-P Series

P1X Series

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

Features

Synchronized Bi-Parting movements Type OSP-P40-SL-BP for Rodless Cylinder ø 40mm

Standard Features:

- · Accurate bi-parting movement through toothed belt synchronization
- Optimum slow speed performance
- Increased action force
- Anodized aluminum guide rail with prism-form slideway arrangement
- Adjustable polymer slide units
- Combined sealing system with
- polymer and felt elements to remove dirt and lubricate the slideway
- Integrated grease nipples for guide lubrication

Applications:

- Opening and closing operations
- Gripping of workpieces outside
- · Gripping of hollow workpieces - inside
- Gripping underneath larger objects
- Clamping force adjustable via pressure regulator

Specification

Series

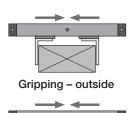
P1Z

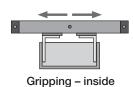
GDL Series

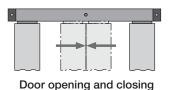
	•	
G		Rodless cylinder for synchronized pi-parting movements OSP-P
	System	Double-acting, with end cushioning, for contactless position sensing
Rodless F Cylinders	Guide	Slideline SL40
ess Ider	Synchronization	Toothed belt
Pne 'S	Mounting	See drawing
nne	Weight (mass)	See table
Rodless Pneumatic Cylinders		Special slow speed grease (additional oil mist lubrication not required)
	Cushioning middle pa	sition Elastic buffer
s o	Maximum speed	0.2 m/s Vmax
0SP-P Series	Maximum stroke of each	ach stroke 500 mm
ΰP	Maximum mass per g lateral moment	•
P1X Series	axial moment rotating moment	46 Nm My _{max}
×	• Option:	special slow speed grease

Operating information

Operating pressure:	116 PSIG (8 bar)
Temperature range:	14°F to 140°F (-10°C to 60°C)
Filtration requirements:	Filtered, nonlubricated compressed air


Material specification

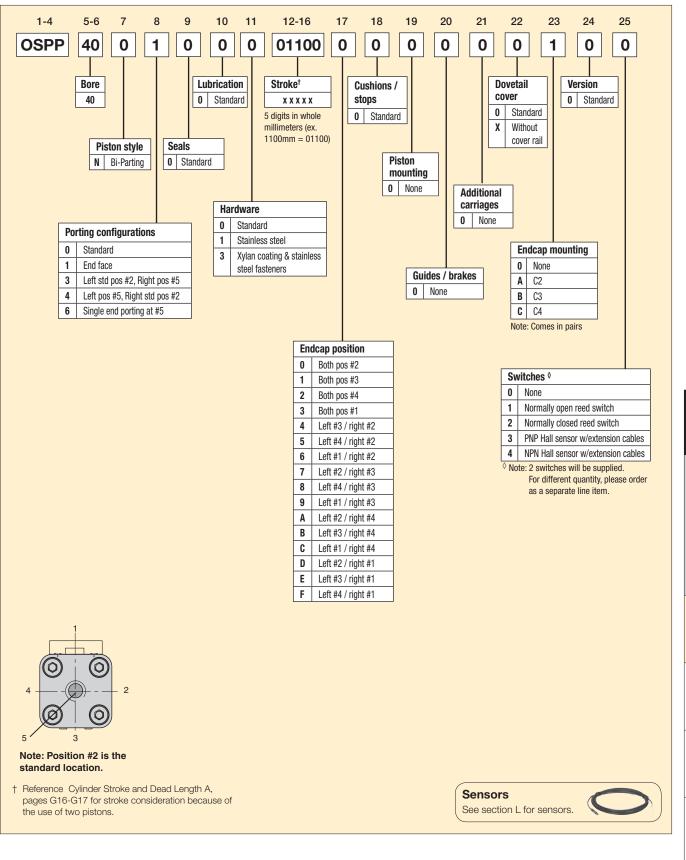

Belt wheel	Aluminum
Toothed belt	Steel-corded polyurethane


Weight (mass) kg

Cylinder series	Weight (Mass) kg	
(Basic cylinder)	at 0mm stroke	per 100mm stroke
OSP-P40-SL-BP	10.334	2.134

Applications

Gripping - underneath



For inventory, lead times, and kit lookup, visit www.pdnplu.com

G40

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

Ordering information for OSP-P rodless basic pneumatic series

For inventory, lead time, and kit lookup, visit www.pdnplu.com

G41

Parker Hannifin Corporation Pneumatic Division Richland, Michigan www.parker.com/pneumatics G

Rodless Pneumatic

0SP-P Series

P1X Series

P1Z Series

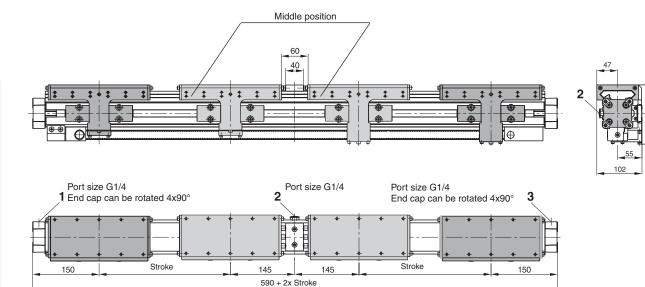
GDL Series

Cylinders

Catalog 0900P-6 Technical Data

Function:

The OSP-P40-SL-BP bidirectional linear drive is based on the OSP-P40 rodless pneumatic cylinder and adapted SLIDELINE SL40 polymer plain-bearing guides.


Two pistons in the cylinder bore are connected via yokes and carriers to the SLIDELINE guide carriers, which handle the forces and moments generated.

The bi-parting movements of the guide carriers are accurately synchronized by a recirculating toothed belt.

The two pistons are driven from the middle to the end positions via a common G1/4 air connection in the middle of the cylinder, and are driven from the end positions to the middle via an air connection in each end cap.

End position cushioning is provided by adjustable air cushioning in the end caps, and middle position cushioning by rubber buffers.

Dimensions (mm)

Air connections:

To drive the guide carriers to the middle position: pressurize ports 1 and 3.

To drive the guide carriers to the end positions: pressurize port 2.

For more dimensions see pages G18 and G19.

G

Rodless Pneumatic

Cylinders

OSP-P Series

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

Linear Guides for OSP-P Series

Adaptive modular system

The Origa system plus – OSP – provides a comprehensive range of linear guides for the pneumatic OSP-P.

Advantages:

- Takes high loads and forces
- High precision
- Smooth operation
- Can be retrofitte
- Can be installed in any position

Series OSP-P - Standard

• Piston diameters 10 to 80mm

SLiDeLine

- The cost-effective plain bearing guide for medium loads.
- Active/ Passive Brake optional.
- Piston diameters 16 to 80mm

POWeRSLiDe

- The roller guide for heavy loads and hard application conditions
- Piston diameters
 16 to 50mm

- The compact aluminum oller guide for high loads and velocities.
- Active / Passive Brake optional.
- Piston diameters 16 to 50mm

STARLine

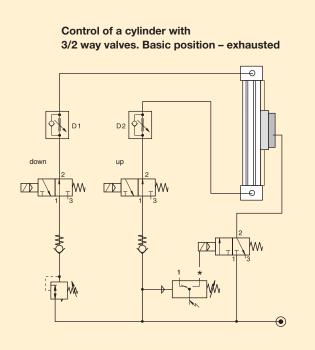
- Recirculating ball bearing guide for very high loads and precision
- Piston diameters
 16 to 50mm

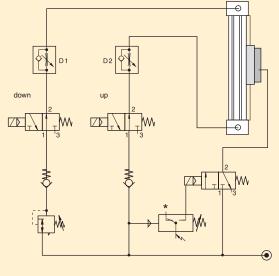
KF GUiDe

- Recirculating ball bearing guide for highest loads and precision.
- Correspond to FESTO dimensions (Type DGPL-KF)
- Piston diameters 16 to 50mm

HD HeAVY DUTY GUIDe

- The ball bushing guide for the heavy loads and greatest accuracy.
- Piston diameters
 25 to 50mm





Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

Application example - Vertical Application

Control of a cylinder with 3/2 way valves. Basic position – pressurized

Control examples

G

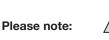
Rodless Pneumatic Cylinders

OSP-P Series

P1X Series

Series

P1Z


Under normal operating circumstances the pressure switch is closed and the air flows th ough the 3/2 way solenoid valves from port 1 to 2, thus lifting the brake from the rail (operating condition).

The brake is pressurized by means of a 3/2 way valve in combination with a pressure switch. When there is a pressure loss, the brake is actuated by the pressure switch.

When the air pressure is restored to both cylinder chambers, the brake is lifted and the linear drive can be moved again.

The speed regulating valves D1 and D2 control the speed of the linear drive, and have no influence on the brake. The two non-return valves give the system a higher stability.

The pressure regulating valve is used to compensate for the downward force in this vertical application.

Before the brake is lifted, make sure that both air chambers of the linear drive are pressurized.

Small diameter tubing, fittings and valves with a nominal diameter, and tubing that is too long all change the reaction time of the brake!

* Tip:

The pressure switch actuates the brake when the pressure drops below the set value.

For accessories, such as tubing and fittings, please effer to our separate catalog.

Required Components

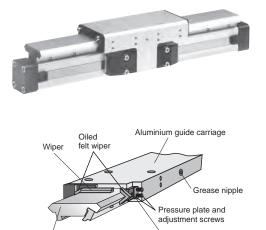
- Three, Three-Way Valves
- Port size M5, G1/8, G1/4, G1/2
- Pressure Regulator G1/8 - G3/8
- Pneumatic Accessories
- P/E-Switch
- Check Valves
 G1/8 G3/8
- Flow Control Valves M5 - G1/4

Contact factory for literature on the above valves/accessories

SLIDELINE, Plain Bearing Guide SL ø 16 to 80mm bore

For Linear-drive

• Series OSP-P

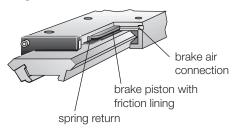


- Features
- Maximum speed < 1 m/s
- Adjustable plastic slide elements – optional with integral brake
- Composite sealing system with plastic and felt wiper elements to remove dirt and lubricate the slideways
- Corrosion resistant version available on request
- Any length of stroke up to 5500mm (longer strokes on request)

Integrated Brake (optional) for series OSP-P25 to OSP-P50:

- Actuated by pressure
- Released by exhausting and spring return

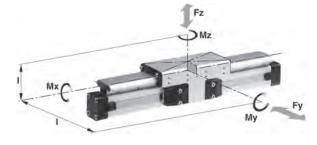
For further technical data see also linear drives OSP-P, see page G14.


Slide adjustment

elements

Option – Integrated Brake

Aluminium


auide rail

Loads, Forces and Moments

The table shows the maximum permissible values for smooth operation, which should not be exceeded even under dynamic conditions.

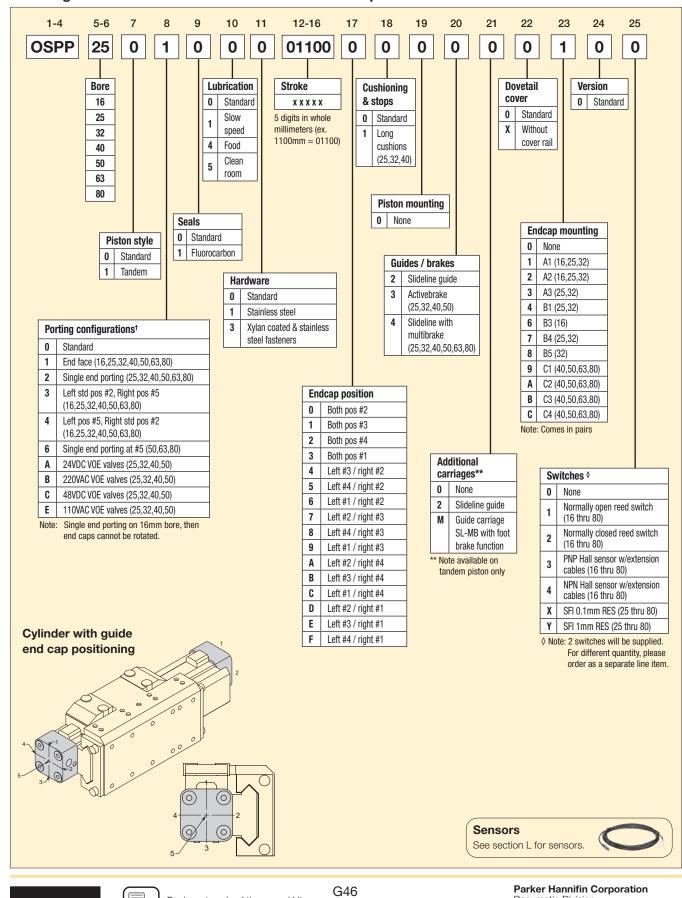
The load and moment figures apply to speeds v < 0.2 m/s.

						Maximum	Mass of linea	r drive with guide (kg)		
Series	For linear drive	Max. Mx	moments My	s (Nm) Mz	Max. loads (N) Fy, Fz	braking force a 6 bar (N)†	With 0mm stroke	Increase per 100mm stroke	Mass * of guide carriage (kg)	
SL16	OSP-P16	6	11	11	325	-	0.57	0.22	0.23	•
SL25	OSP-P25	14	34	34	675	325	1.55	0.39	0.61	•
SL32	OSP-P32	29	60	60	925	545	2.98	0.65	0.95	•
SL40	OSP-P40	50	110	110	1500	835	4.05	0.78	1.22	
SL50	OSP-P50	77	180	180	2000	1200	6.72	0.97	2.06	
SL63	OSP-P63	120	260	260	2500	-	11.66	1.47	3.32	
SL80	OSP-P80	120	260	260	2500	_	15.71	1.81	3.32	

* Add the mass of the guide carriage to the mass to be cushioned.

† Only with integrated brake: Braking force on dry oil-free surface values are decreased for lubricated slideways.

G45


Parker Hannifin Corporation Pneumatic Division Richland, Michigan www.parker.com/pneumatics OSP-P Series

P1X Series

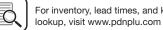
P1Z Series

GDL Series

Ordering information for OSP-P rodless SLIDELINE pneumatic series

G

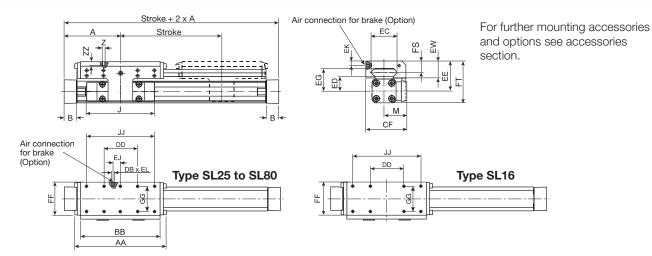
Rodless Pneumatic


Cylinders

Series OSP-P

Series P1X

Series P1Z


GDL Series

For inventory, lead times, and kit

Pneumatic Division Richland, Michigan www.parker.com/pneumatics

SLIDELINE ø 16 to 80mm

Dimensions (mm)

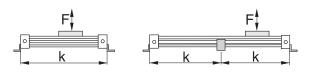
Series	Α	В	J	Μ	Z	AA	BB	DB	DD	CF	EC	ED	EE	EG	EJ	EK	EL	EW	FF	FT	FS	GG	JJ	ZZ
SL 16	65	14	69	31	M4	106	88	-	30	55	36	8	40	30	-	_	_	22	48	55	14	36	70	8
SL 25	100	22	117	40.5	M6	162	142	M5	60	72.5	47	12	53	39	22	6	6	30	64	73.5	20	50	120	12
SL 32	125	25.5	152	49	M6	205	185	M5	80	91	67	14	62	48	32	6	6	33	84	88	21	64	160	12
SL 40	150	28	152	55	M6	240	220	M5	100	102	77	14	64	50	58	6	6	34	94	98.5	21.5	78	200	12
SL 50	175	33	200	62	M6	284	264	M5	120	117	94	14	75	56	81	6	6	39	110	118.5	26	90	240	16
SL 63	215	38	256	79	M8	312	292	-	130	152	116	18	86	66	-	-	-	46	152	139	29	120	260	14
SL 80	260	47	348	96	M8	312	292	-	130	169	116	18	99	79	-	-	_	46	152	165	29	120	260	14

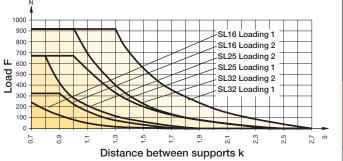

Mid-Section Support

(for versions see page G83)

Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading. A distinction must be drawn between loading 1 and loading 2.

Deflection of 0.5 mm max. between supports is permissible.


Note: For speeds v > 0.5 m/s the distance between supports should not exceed 1 m.


Loading 1

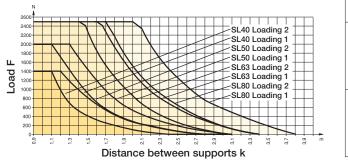
Loading 2

SLIDELINE 16 to 32mm bore

G

Rodless Pneumatic

0SP-P Series


P1X Series

P1Z Series

GDL Series

Cylinders

SLIDELINE 40 to 80mm bore

Parker Hannifin Corporation Pneumatic Division Richland, Michigan www.parker.com/pneumatics

For inventory, lead time, and kit lookup, visit www.pdnplu.com

G47

Multi-Brake Passive Brakes MB-SL ø 25 to 80mm bore

ORIGA

SYSTEM PLUS

Series MB-SL 25 to 80 for Linear-drive

Series OSP-P

Features

- Brake operated by spring actuation
- Brake release by pressurization
- Anodized aluminum rail, with prism shaped slide elements
- Adjustable plastic slide elements
- · Composite sealing system with plastic and felt wiper elements to remove dirt and lubricate the slideway
- Replenishable guide lubrication by integrated grease nipples
- Blocking function in case of pressure loss
- Intermediate stops possible

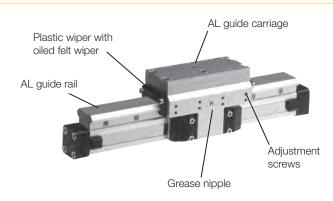
Function

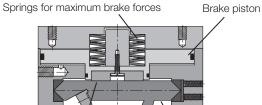
G

Rodless Pneumatic

Cylinders

Series OSP-P

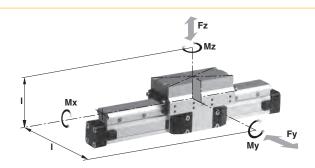

Series P1X


Series P1Z

GDL Series

The Multi-Brake is a passive device. When the air pressure is removed the brake is actuated and movement of the cylinder is blocked. The brake is released by pressurization.

The high friction, wear resistant brake linings allow the Multi-Brake to be used as a dynamic brake to stop cylinder movement in the shortest possible time. The powerful springs also allow the Multi-Brake to be used effectively in positioning applications.


Wear resistant brake lining, for long service life

Aluminum plain bearing guide Slideline for high loads and moments

Loads, Forces and Moments

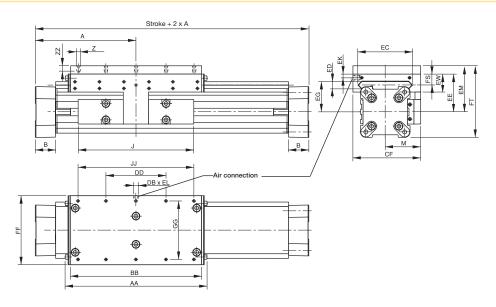
The table shows the maximum values for light, shock-free operation, which must not be exceeded even in dynamic operation.

Load and moment data are based on speeds v < 0.2 m/s.

						Maximum	Mass of linea	r drive with guide (kg)	
	For linear	Max.	moments	s (Nm)	Max. loads (N)	braking force a 6	With 0mm	Increase per	Mass * guide
Series	drive	Mx	Му	Mz	Fy, Fz	bar (N) †	stroke	100mm stroke	carriage (kg)
MB-SL25	OSP-P25	14	34	34	675	470	2.04	0.39	1.10
MB-SL32	OSP-P32	29	60	60	925	790	3.82	0.65	1.79
MB-SL40	OSP-P40	50	110	110	1500	1200	5.16	0.78	2.34
MB-SL50	OSP-P50	77	180	180	2000	1870	8.29	0.97	3.63
MB-SL63	OSP-P63	120	260	260	2500	2900	13.31	1.47	4.97
MB-SL80	OSP-P80	120	260	260	2500	2900	17.36	1.81	4.97
ND-3L00	031-100	120	200	200	2300	2900	17.00	1.01	4.37

* Add the mass of the guide carriage to the mass to be cushioned.

+ Braking surface dry - oil on the braking surface will reduce the raking force.



For inventory, lead times, and kit lookup, visit www.pdnplu.com

G48

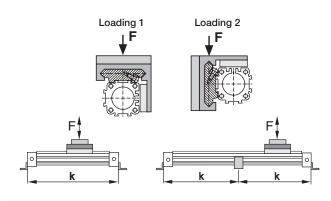
Parker Hannifin Corporation Pneumatic Division Richland, Michigan www.parker.com/pneumatics

OSP-P with Passive Brake MB-SL

Dimension (mm)

Series	А	в	J	М	Z	AA	BB	DB	DD	CF	EC	ED	EE	EG	ΕK	EL	EM	EW	FF	FT	FS	GG	JJ	ZZ
MB-SL25	100	22	117	40,5	M6	162	142	M5	60	72.5	47	12	53	39	9	5	73	30	64	93.5	20	50	120	12
MB-SL32	125	25.5	152	49	M6	205	185	G1/8	80	91	67	14	62	48	7	10	82	33	84	108	21	64	160	12
MB-SL40	150	28	152	55	M6	240	220	G1/8	100	102	77	14	64	50	6.5	10	84	34	94	118.5	21.5	78	200	12
MB-SL50	175	33	200	62	M6	284	264	G1/8	120	117	94	14	75	56	10	12	95	39	110	138.5	26	90	240	12
MB-SL63	215	38	256	79	M8	312	292	G1/8	130	152	116	18	86	66	11	12	106	46	152	159	29	120	260	13
MB-SL80	260	47	348	96	M8	312	292	G1/8	130	169	116	18	99	79	11	12	119	46	152	185	29	120	260	13

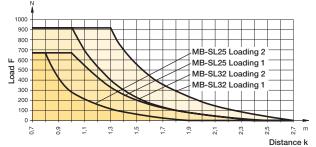
G49

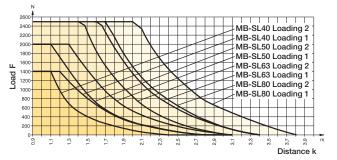

Mid-Section Support

(for versions see page G83)

Mid-Section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive.

The diagrams show the maximum permissible unsupported length in relation to loading. A distinction must be drawn between loading 1 and loading 2. Deflection of 0.5 mm max. between supports is permissible.


Note: For speeds v > 0.5 m/s the distance between supports should not exceed 1 m.



For inventory, lead time, and kit lookup, visit www.pdnplu.com

Permissible Unsupported Length MB-SL25, MB-SL32

Permissible Unsupported Length MB-SL40, MB-SL50, MB-SL63 and MB-SL80

Parker Hannifin Corporation Pneumatic Division Richland, Michigan www.parker.com/pneumatics G

Rodless Pneumatic

0SP-P Series

P1X Series

P1Z Series

GDL Series

Cylinders

Multi-Brake Passive Brakes PS ø 16 to 50mm bore

Series PS 16 to 50 for Linear-drive

• Series OSP-P

Features

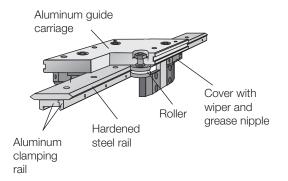
G

Rodless Pneumatic

Cylinders

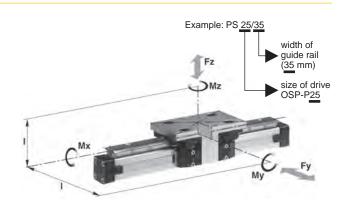
OSP-P Series

P1X Series


P1Z Series

GDL Series

- Anodized aluminum guide carriage with vee rollers
- having 2 rows of ball bearings
- Hardened steel guide rail
- Several guide sizes can be used on the same drive
- Corrosion resistance version available on request
- Max. Speed v = 3 m/s
- Tough roller cover with wiper and grease nipple
- Any length of stroke up to 3500mm

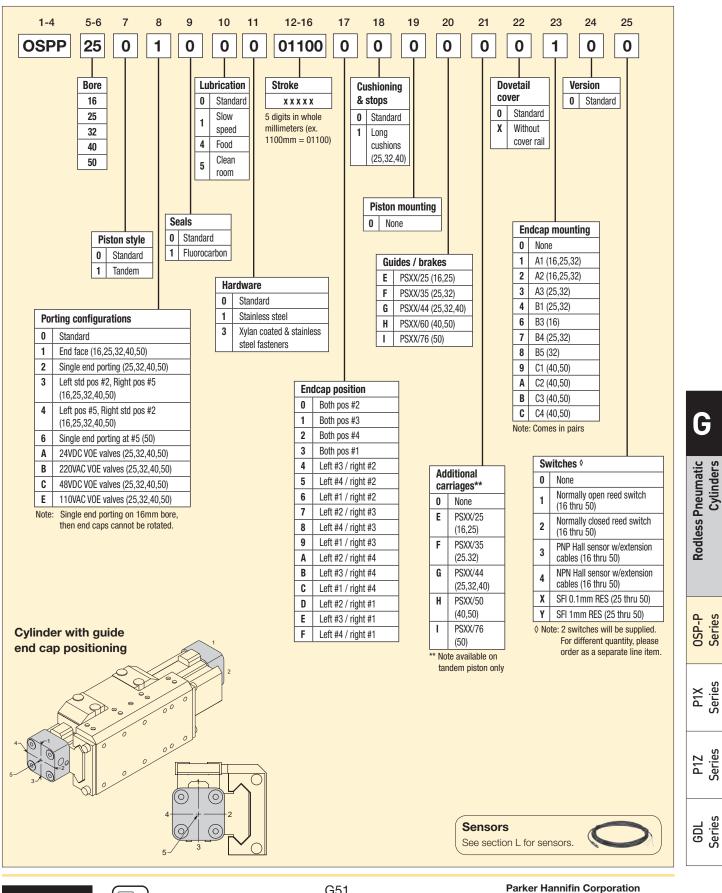


Loads, Forces and Moments

The table shows the maximum permissible values for smooth operation, which should not be exceeded even under dynamic conditions.

For further information and technical data see linear drives OSP-P.

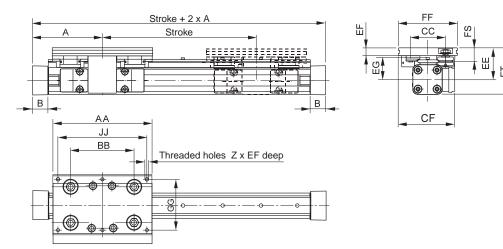
Series PS 16/25 PS 25/25 PS 25/35 PS 25/44	For	Max. m	noments (N	lm)	Max. load (N)	Mass of linear	r drive with guide (kg)	_
Series	linear drive	Mx	Му	Mz	Fy, Fz	With 0mm stroke	Increase per 100mm stroke	Mass * of guide carriage (kg)
PS 16/25	OSP-P16	14	45	45	1400	0.93	0.24	0.7
PS 25/25	OSP-P25	14	63	63	1400	1.5	0.4	0.7
PS 25/35	OSP-P25	20	70	70	1400	1.7	0.4	0.8
PS 25/44	OSP-P25	65	175	175	3000	2.6	0.5	1.5
PS 32/35	OSP-P32	20	70	70	1400	2.6	0.6	0.8
PS 32/44	OSP-P32	65	175	175	3000	3.4	0.7	1.5
PS 40/44	OSP-P40	65	175	175	3000	4.6	1.1	1.5
PS 40/60	OSP-P40	90	250	250	3000	6	1.3	2.2
PS 50/60	OSP-P50	90	250	250	3000	7.6	1.4	2.3
PS 50/76	OSP-P50	140	350	350	4000	11.5	1.8	4.9


* Add the mass of the guide carriage to the mass to be cushioned.

G50

Parker Hannifin Corporation Pneumatic Division Richland, Michigan www.parker.com/pneumatics

Ordering information for OSP-P rodless POWERSLIDE pneumatic series



G51

Pneumatic Division Richland, Michigan www.parker.com/pneumatics

Cylinders

POWERSLIDE Dimensions

Dimensions (mm)

Series	Α	в	Z	AA	BB	СС	CF	EE	EF	EG	FF	FS	FT	GG	JJ
PS 16/25	65	14	4xM6	120	65	47	80	49	12	35	80	21	64	64	100
PS 25/25	100	22	6xM6	145	90	47	79.5	53	11	39	80	20	73.5	64	125
PS 25/35	100	22	6xM6	156	100	57	89.5	52.5	12.5	37.5	95	21.5	73	80	140
PS 25/44	100	22	6xM8	190	118	73	100	58	15	39	116	26	78.5	96	164
PS 32/35	125	25.5	6xM6	156	100	57	95.5	58.5	12.5	43.5	95	21.5	84.5	80	140
PS 32/44	125	25.5	6xM8	190	118	73	107	64	15	45	116	26	90	96	164
PS 40/44	150	28	6xM8	190	118	73	112.5	75	15	56	116	26	109.5	96	164
PS 40/60	150	28	6xM8	240	167	89	122.5	74	17	54	135	28.5	108.5	115	216
PS 50/60	175	33	6xM8	240	167	89	130.5	81	17	61	135	28.5	123.5	115	216
PS 50/76	175	33	6xM10	280	178	119	155.5	93	20	64	185	39	135.5	160	250

Service Life

Calculation of service life is achieved in two stages:

- Determination of load factor LF from the loads to be carried
- Calculation of service life in km

Lubrication

For maximum system life, lubrication of the rollers must be maintained at all times. Only high quality Lithium based grease

Only high quality Lithium based greases should be used.

Lubrication intervals are dependent on environmental conditions (temperature, running speed, grease quality etc.) therefore the installation should be regularly inspected.

EC

1. Calculation of load factor LF

1.5	Mx		My		Mz		Fy		Fz
LF =	Mxmax	+	Mymax	+	Mzmax	+	Fymax	+	Fzmax

with combined loads, LF should not exceed the value 1.

2. Service life calculation

106 • For PS 16/25, PS 25/25, PS 25/35, Service life (km) = $(LF + 0.02)^3$ and PS 32/35 PS 25/44, PS 32/44, PS 40/44, 314 • For Service life (km) = (LF + 0,015)³ PS 40/60 and PS 50/60: 680 • For PS 50/76: Service life (km) = (LF + 0.015)3

GDL Series

G

Rodless Pneumatic Cylinders

OSP-P Series

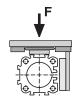
Series

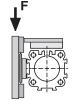
Series

P1Z

G52

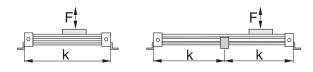
Parker Hannifin Corporation Pneumatic Division Richland, Michigan www.parker.com/pneumatics

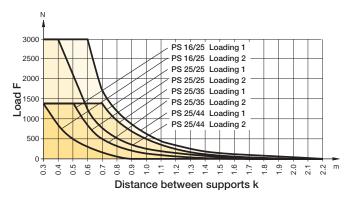

Mid-Section Support


(for versions see page G83)

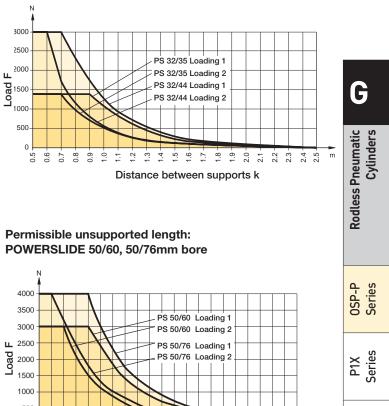
Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading. A distinction must be drawn between loading 1 and loading 2.

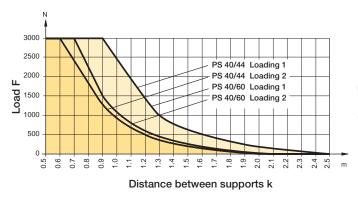
Deflection of 0.5 mm max. between supports is permissible.

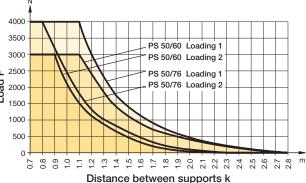

Note: For speeds v > 0.5 m/s the distance between supports should not exceed 1 m.



Loading 1


Loading 2


Permissible unsupported length: POWERSLIDE 16/25, 25/25, 25/35, 25/44mm bore


Permissible unsupported length: POWERSLIDE 2/35, 32/44mm bore

Permissible unsupported length: POWERSLIDE 40/44, 40/60mm bore

Permissible unsupported length:

Parker Hannifin Corporation Pneumatic Division Richland, Michigan www.parker.com/pneumatics

P1Z Series

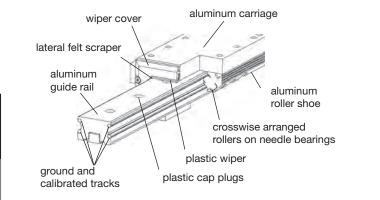
GDL Series

Aluminum Roller Guide PROLINE PL ø 16 to 50mm bore

SYSTEM

PLUS

Series PL 16 to 50 for Linear-drive


Series OSP-P

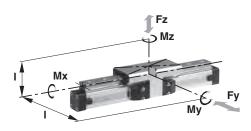
Features

- High precision
- High velocities (10 m/s)
- Smooth operation low noise
- Integated wiper system
- Long life lubrication
- · Compact dimensions compatible to Slideline plain bearing guide
- Any length of stroke up to 3750mm

Integrated Brake (optional) for Series OSP-P25 to OSP-P50:

- Actuated by pressurization
- · Release by depressurization and spring actuation

Loads, Forces and Moments


The table shows the maximal permissible loads. If multiple moments and forces act upon the cylinder simultaneously, the following equation applies:

$$\frac{Mx}{Mxmax} + \frac{My}{Mymax} + \frac{Mz}{Mzmax} + \frac{Fy}{Fymax} + \frac{Fz}{Fzmax} \le 1$$

The sum of the loads should not exceed >1. With a load factor of less than 1, service life is 8000 km

The table shows the maximum permissible values for light, shock-free operation, which must not be exceeded even under dynamic conditions.

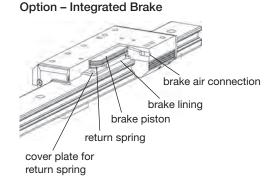
Max. moments (Nm)

	Max. loads (N)	Maximum	Mass of line (kg)	ar drive with guide	
<u>,</u>	Fy, Fz	braking force at 6 bar (N) †	with 0mm stroke	increase per 100mm stroke	Mass * carriag
	542	_	0.55	0.19	0.24

,	Series	For linear drive	Mx	Му	Mz	Fy, Fz	braking force at 6 bar (N) †	with 0mm stroke	increase per 100mm stroke	Mass * guide carriage (kg)
ī	PL 16	OSP-P16	8	12	12	542	-	0.55	0.19	0.24
	PL 25	OSP-P25	16	39	39	857	on request	1.65	0.40	0.75
	PL 32	OSP-P32	29	73	73	1171	on request	3.24	0.62	1.18
	PL 40	OSP-P40	57	158	158	2074	on request	4.35	0.70	1.70
j	PL 50	OSP-P50	111	249	249	3111	on request	7.03	0.95	2.50

* Add the mass of the guide carriage to the mass to be cushioned.

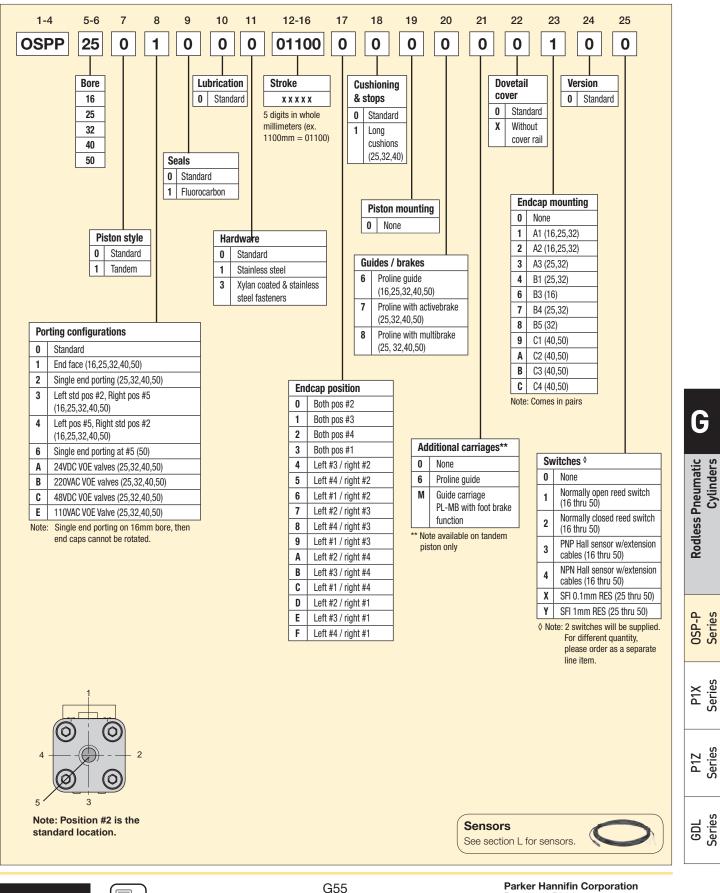
† Only for version with brake: Braking surface dry - oiled surface reduces the effective braking force.



For inventory, lead times, and kit lookup, visit www.pdnplu.com

G54

Parker Hannifin Corporation Pneumatic Division Richland, Michigan www.parker.com/pneumatics

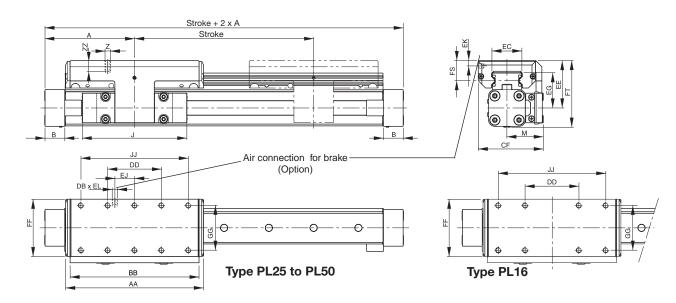

OSP-P Series

Series P1X

Series

GDL Series

Ordering information for OSP-P rodless PROLINE pneumatic series



התי

Pneumatic Division Richland, Michigan www.parker.com/pneumatics

Cylinders

OSP-P PROLINE PL16, PL25, PL32, PL40, PL50

Dimension (mm)

G

Rodless Pneumatic Cylinders

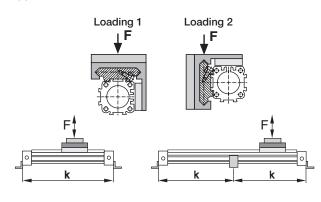
OSP-P Series

P1X Series

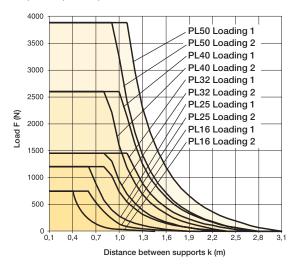
Series P1Z

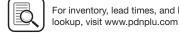
GDL Series

Series	А	в	J	М	Z	AA	BB	DB	DD	CF	EC	EE	EG	EJ	EK	EL	FF	FS	FT	GG	JJ	ZZ
PL16	65	14	69	31	M4	98	88	-	30	55	23	40	30	-	-	-	48	17	55	36	70	8
PL25	100	22	117	40.5	M6	154	144	M5	60	72.5	32.5	53	39	22	6	6	64	23	73.5	50	120	12
PL32	125	25.5	152	49	M6	197	187	M5	80	91	42	62	48	32	6	6	84	25	88	64	160	12
PL40	150	28	152	55	M6	232	222	M5	100	102	47	64	50.5	58	6	6	94	23.5	98.5	78	200	12
PL50	175	33	200	62	M6	276	266	M5	120	117	63	75	57	81	6	6	110	29	118.5	90	240	16


Mid-Section Support

(For versions, see page G83)


Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams


show the maximum permissible unsupported length in relation to loading. A distinction must be drawn between loading 1 and loading 2. Deflection of 0.5 mm max. between supports is permissible.

Note: For speeds v > 0.5 m/s the distance between supports should not exceed 1 m.

Permissible Unsupported Length PL16, PL25, PL32, PL40 and PL50

G56

Parker Hannifin Corporation Pneumatic Division Richland, Michigan www.parker.com/pneumatics

AL guide rail

on ground and

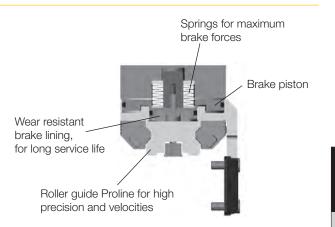
Multi-Brake Passive Brake with Aluminum Roller Guide PROLINE PL 25 to 50mm bore

Series MB-PL 25 to 50 for Linear-drive

• Series OSP-P

- Features
- Brake operated by spring actuation
- Brake release by pressurization
- Optional sensor to indicate brake lining wear
- Composite sealing system with plastic and felt wiper elements to remove dirt and lubricate the slideway
- Blocking function in case of pressure loss
- Intermediate stops possible

AL guide carriage with rollers on needle bearings


calibrated tracks

oiled felt wiper

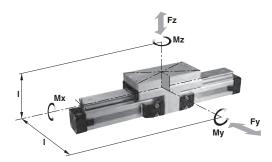
Function

The Multi-Brake is a passive device. When the air pressure is removed the brake is actuated and movement of the cylinder is blocked. The brake is released by pressurization.

The high friction, wear resistant brake linings allow the Multi-Brake to be used as a dynamic brake to stop cylinder movement in the shortest possible time. The powerful springs also allow the Multi-Brake to be used effectively in positioning applications.

Loads, Forces and Moments

The table shows the maximal permissible loads. If multiple moments and forces act upon the cylinder simultaneously, the following equation applies:


$$\frac{Mx}{Mxmax} + \frac{My}{Mymax} + \frac{Mz}{Mzmax} + \frac{Fy}{Fymax} + \frac{Fz}{Fzmax} \le 1$$

The sum of the loads should not exceed >1. With a load factor of less than 1, service life is 8000 km

The table shows the maximum permissible values for light, shock-free operation, which must not be exceeded even under dynamic conditions.

Operating Pressure 4.5 - 8 bar.

A pressure of min. 4.5 bar release the brake.

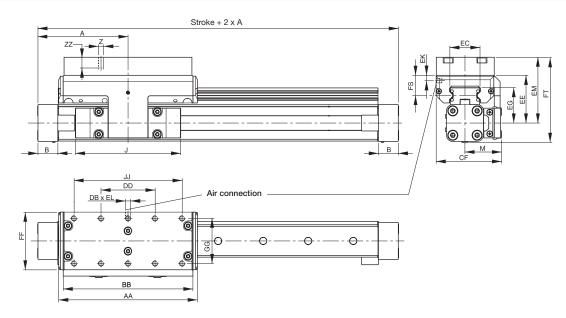
		Max. m	oments (Ni	n)	Max. loads (N)		Mass of line	ar drive with guide (kg)	
Series	For linear drive	Mx	Му	Mz	Fy, Fz	Max. braking force (N) †	With 0mm stroke	Increase per 100mm stroke	Mass* guide carriage (kg)
MB-PL25	OSP-P25	16	39	39	857	315	2.14	0.40	1.24
MB-PL32	OSP-P32	29	73	73	1171	490	4.08	0.62	2.02
MB-PL40	OSP-P40	57	158	158	2074	715	5.46	0.70	2.82
MB-PL50	OSP-P50	111	249	249	3111	1100	8.60	0.95	4.07

 $^{\star}\ensuremath{\mathsf{Add}}$ the mass of the guide carriage to the mass to be cushioned.

† Only for version with brake: Braking surface dry - oiled surface reduces the effective braking force.

G57

Parker Hannifin Corporation Pneumatic Division Richland, Michigan www.parker.com/pneumatics


OSP-P Series

P1X Series

P1Z Series

GDL Series

OSP-P with PROLINE Passive Brake MB-PL25, PL32, PL40, PL50

Dimension (mm)

Series	А	В	J	М	Z	AA	BB	DB	DD	CF	EC	EE	EG	EK	EL	EM	FF	FS	FT	GG	JJ	ZZ
MB-PL25	100	22	117	40.5	M6	154	144	M5	60	72.5	32.5	53	39	9	5	73	64	23	93.5	50	120	12
MB-PL32	125	25.5	152	49	M6	197	187	G1/8	80	91	42	62	48	7	10	82	84	25	108	64	160	12
MB-PL40	150	28	152	55	M6	232	222	G1/8	100	102	47	64	50.5	6.5	10	84	94	23.5	118.5	78	200	12
MB-PL50	175	33	200	62	M6	276	266	G1/8	120	117	63	75	57	10	12	95	110	29	138.5	90	240	16

OSP-P Series

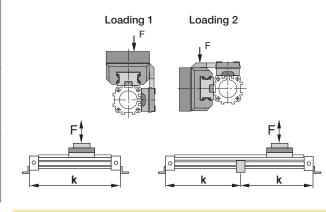
P1X Series

Series P1Z

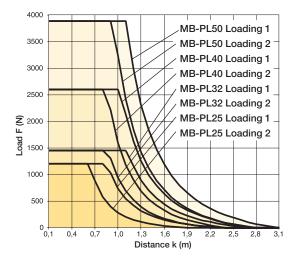
GDL Series

G

Mid-Section Support


(for versions see page G83)

Mid-Section supports are required from a certain stroke length to prevent


excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading.

A distinction must be drawn between loading 1 and loading 2. Deflection of 0.5 mm max. between supports is permissible.

Note: For speeds v > 0.5 m/s the distance between supports should not exceed 1 m.

Permissible Unsupported Length OSP-P MB-PL25, MB-PL32, MB-PL40, MB-PL50

For inventory, lead times, and kit

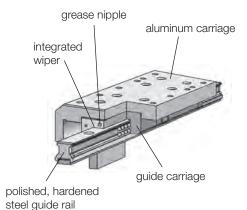
G58

Parker Hannifin Corporation Pneumatic Division Richland, Michigan www.parker.com/pneumatics

Recirculating Ball Bearing Guide STARLINELINE PL 16 to 50mm bore

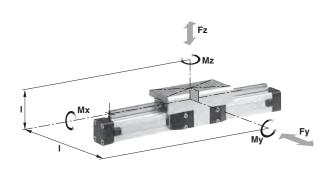
Series PL 16 to 50 for Linear-drive

• Series OSP-P


Features

- Polished and hardened steel guide rail
- For very high loads in all directions
- High precision
- Integrated wiper system
- Integrated grease nipples
- Any length of stroke up to 3700 mm
- Anodized aluminum guide carriage

 dimensions compatible with OSP guides SLIDELINE and PROLINE
- Installation height (STL16 32) compatible with OSP guides SLIDELINE and PROLINE
- Maximum speed STL16: v = 3 m/s STL25 to 50: v = 5 m/s


Loads, Forces and Moments

The table shows the maximum permissible loads. If multiple moments and forces act upon the cylinder simultaneously, the following equation applies:

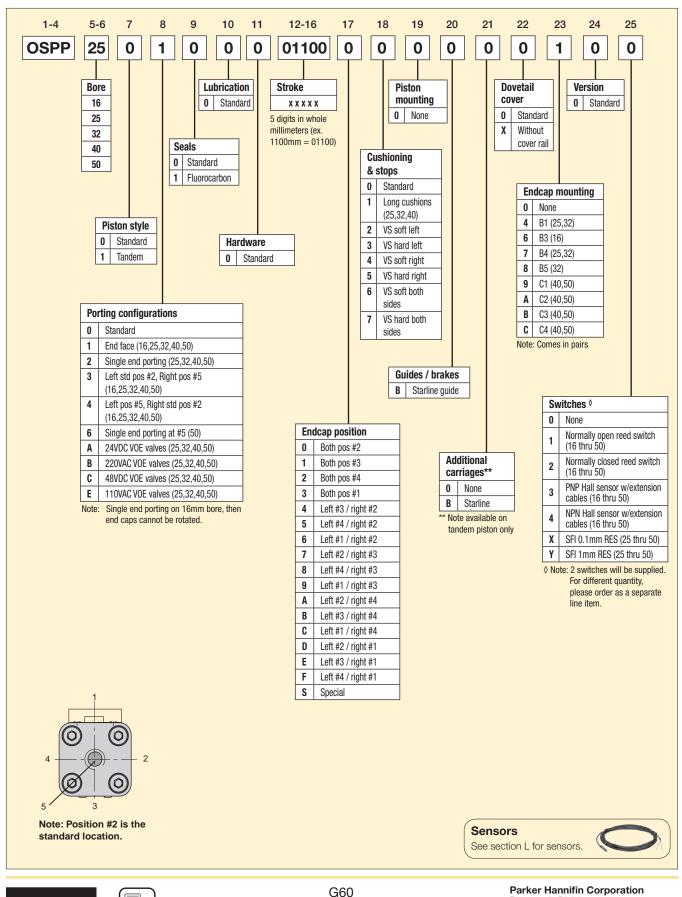
$$\frac{Mx}{Mxmax} + \frac{My}{Mymax} + \frac{Mz}{Mzmax} + \frac{Fy}{Fymax} + \frac{Fz}{Fzmax} \leq 1$$

The sum of the loads should not exceed >1.

The table shows the maximum permissible values for light, shock-free operation, which must not be exceeded even under dynamic conditions.

	Max. mo	oments (Nm)	Max. Ic	oads (N)		Mass of linea	ar drive with guide (kg)	
For linear drive	Mx	My	Mz	Fy	Fz	with 0mm stroke	increase per 100mm stroke	Mass * guide carriage (kg)
OSP-P16	15	30	30	1000	1000	0.598	0.210	0.268
OSP-P25	50	110	110	3100	3100	1.733	0.369	0.835
OSP-P32	62	160	160	3100	3100	2.934	0.526	1.181
OSP-P40	150	400	400	4000	7500	4.452	0.701	1.901
OSP-P50	210	580	580	4000	7500	7.361	0.936	2.880
	drive OSP-P16 OSP-P25 OSP-P32 OSP-P40	For linear drive Mx OSP-P16 15 OSP-P25 50 OSP-P32 62 OSP-P40 150	drive Mx My OSP-P16 15 30 OSP-P25 50 110 OSP-P32 62 160 OSP-P40 150 400	For linear drive Mx My Mz OSP-P16 15 30 30 OSP-P25 50 110 110 OSP-P32 62 160 160 OSP-P40 150 400 400	For linear drive Mx My Mz Fy OSP-P16 15 30 30 1000 OSP-P25 50 110 110 3100 OSP-P32 62 160 160 3100 OSP-P40 150 400 400 4000	For linear drive Mx My Mz Fy Fz OSP-P16 15 30 30 1000 1000 OSP-P25 50 110 110 3100 3100 OSP-P32 62 160 160 3100 3100 OSP-P40 150 400 400 4000 7500	For linear drive Mx My Mz Fy Fz with 0mm stroke OSP-P16 15 30 30 1000 1000 0.598 OSP-P25 50 110 110 3100 3100 1.733 OSP-P32 62 160 160 3100 3100 2.934 OSP-P40 150 400 4000 7500 4.452	For linear drive Mx My Mz Fy Fz with 0mm stroke increase per 100mm stroke OSP-P16 15 30 30 1000 1000 0.598 0.210 OSP-P25 50 110 110 3100 3100 1.733 0.369 OSP-P32 62 160 160 3100 3100 2.934 0.526 OSP-P40 150 400 4000 7500 4.452 0.701

* Add the mass of the guide carriage to the mass to be cushioned.


G59

Parker Hannifin Corporation Pneumatic Division Richland, Michigan www.parker.com/pneumatics P1X Series

P1Z Series

GDL Series

Ordering information for OSP-P rodless STARLINE pneumatic series

G

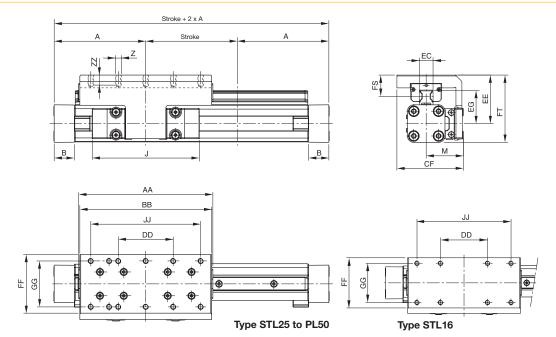
Rodless Pneumatic

Cylinders

Series OSP-P

Series P1X

Series P1Z

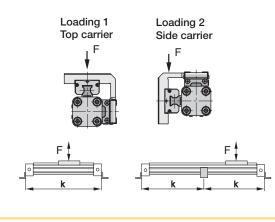

GDL Series

For inventory, lead times, and kit lookup, visit www.pdnplu.com

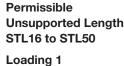
Pneumatic Division Richland, Michigan www.parker.com/pneumatics

OSP-P with STARLINE Recirculating Ball Bearing Guide STL16, STL25, STL32, STL40, STL50

Dimension (mm)

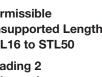

Series	Α	в	J	М	Z	AA	BB	CF	DD	EC	EE	EG	FF	FS	FT	GG	JJ	ZZ
STL16	65	14	69	31	M4	93	90	55	30	15	40	24.6	48	18	55	36	70	8
STL25	100	22	117	40.5	M6	146.6	144	72.5	60	15	53	36.2	64	23.2	73.5	50	120	12
STL32	125	25.5	152	49	M6	186.6	184	91	80	15	62	42.2	84	26.2	88	64	160	12
STL40	150	28	152	55	M6	231	226	102	100	20	72	51.6	94	28.5	106.5	78	200	12
STL50	175	33	200	62	M6	270.9	266	117	120	23	85	62.3	110	32.5	128.5	90	240	16

Mid-Section Support


(For versions, see pages G83-G84)

Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading. A distinction must be drawn between loading 1 and loading 2. Deflection of 0.5 mm max. between supports is permissible.

Note: For speeds v > 0.5 m/s the distance between supports should not exceed 1 m.



Top carrier

Permissible **Unsupported Length** STL16 to STL50


Side carrier

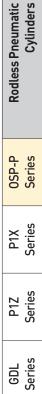
G61

Loading 2

70

600

550


500

35

150 10

ш 45

Load

OSP-P STL16

OSP-P STL25

OSP-P STL32

OSP-P STL40

OSP-P STL50

G

Parker Hannifin Corporation Pneumatic Division Richland, Michigan www.parker.com/pneumatics

Distance between supports

Variable Stop Type VS16 to VS50

The variable stop Type VS provides simple stroke limitation. It can be retrofitted and positioned anywhere along the stroke length.

For every cylinder diameter two types of shock absorber are available – see "Shock Absorber Selection" below.

Mid-section supports and magnetic switches can still be fitted on the same side as the variable stop.

Depending on the application, two variable stops can be fitted if required.

Shock Absorber Selection

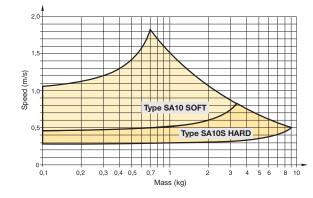
The shock absorber is selected in dependence on the mass and speed.

The mass of the carrier itself must be taken into account.

Series OSP-STL16

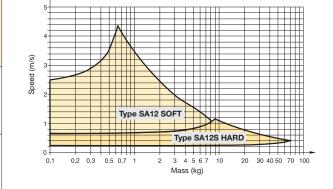
G

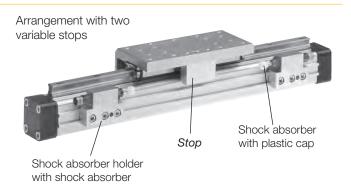
Rodless Pneumatic


Cylinders

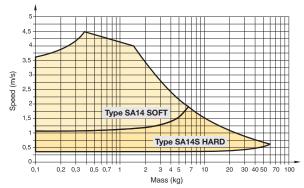
OSP-P Series

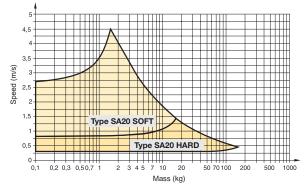
P1X Series


P1Z Series

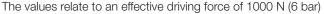

GDL Series The values relate to an effective driving force of 78 N (6 bar)

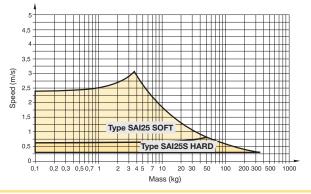
Series OSP-STL25


The values relate to an effective driving force of 250 N (6 bar)


Series OSP-STL32

The values relate to an effective driving force of 420 N (6 bar)




Series OSP-STL40

The values relate to an effective driving force of 640 N (6 bar)

Series OSP-STL50

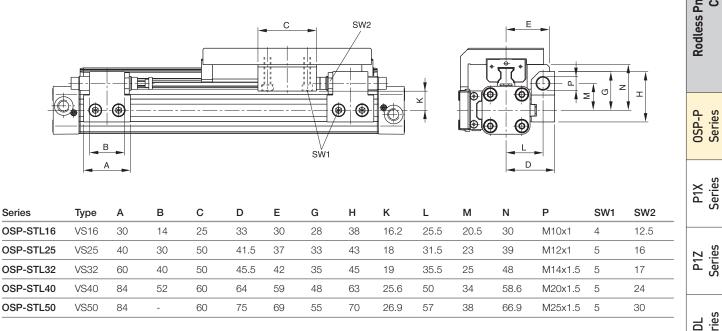
-Parker

For inventory, lead times, and kit lookup, visit www.pdnplu.com

G62

Parker Hannifin Corporation Pneumatic Division Richland, Michigan www.parker.com/pneumatics

Ordering Information – Variable Stop Type VS16 to VS50


Item 2 Shock absorber holder complete with fittings - without shock absorber

with fittings

	Size	VS16		VS25		VS32		VS40		VS50	
Item	Description	Туре	Part number	Туре	Part number	Туре	Part number	Туре	Part number	Туре	Part number
1	Stop, complete	_	21196FIL	-	21197FIL	_	21198FIL	_	21199FIL	-	21200FIL
2	Shock absorber holder, complete	_	21201FIL	_	21202FIL	_	21203FIL	_	21204FIL	_	21205FIL
3 *	Shock absorber, standard	SA10	MC25M	SA12	MC75M-1	SA14	MC150M-B	SA20	MC225M	SAI25	MC600M
	Shock absorber, version S	SA10S	MC25MH	SA12S	MC75M-2	SA14S	MC150MH-B	SA20S	MC225MH	SAI25S	MC600MH

* Shock absorber with plastic cap

Dimension - Variable Stop Type VS16 to VS50

GDL Series

P1Z Series

G63

Parker Hannifin Corporation Pneumatic Division Richland, Michigan www.parker.com/pneumatics

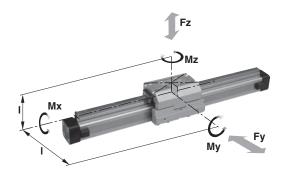
Recirculating Ball Bearing Guide KF 16 to 50mm bore

Series KF16 to KF50 for Linear-drive

• Series OSP-P CLASSIC

Features

- Anodized aluminum guide carriage, the mounting dimensions correspond to FESTO Type: DGPL-KF
- Polished and hardened steel guide rail
- For high loads in all directions
- High precision
- Integrated wiper system
- Integrated grease nipples
- Any length of stroke up to 3700 mm
- Maximum speed KF16, KF40: v = 3 m/s KF25, KF32, KF50: v = 5 m/s


Loads, Forces and Moments

The table shows the maximum permissible loads. If multiple moments and forces act upon the cylinder simultaneously, the following equation applies:

Mx		My		Mz		Fy		Fz	~ 1	
Mxmax	+	Mymax	+	Mzmax	+	Fymax	+	Fzmax	51	

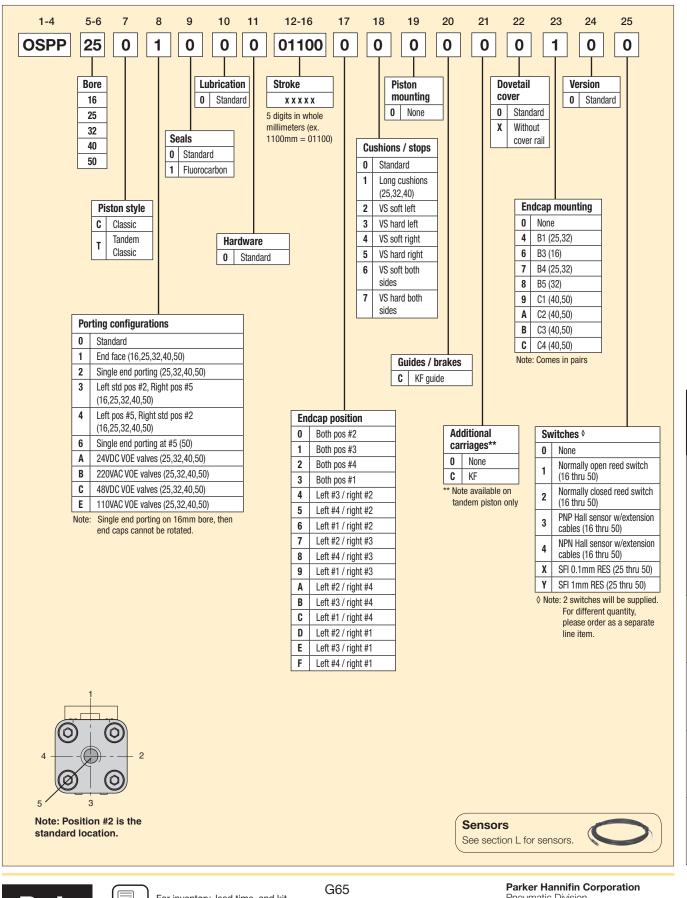
The sum of the loads should not exceed >1.

The table shows the maximum permissible values for light, shock-free operation, which must not be exceeded even under dynamic conditions.

		Max. N	/loments	(Nm)	Max. Lo	oad (N)	Mass of dri	ve with guide (kg)		
Series	for linear drive	Mx	Му	Mz	Fy	Fz	with 0mm stroke	increase per 100mm stroke	Mass * guide carriage (kg)	Groove stone thread size
KF16	OSP-P16	12	25	25	1000	1000	0.558	0.21	0.228	_
KF25	OSP-P25	35	90	90	3100	3100	1.522	0.369	0.607	M5
KF32	OSP-P32	44	133	133	3100	3100	2.673	0.526	0.896	M5
KF40	OSP-P40	119	346	346	4000	7100	4.167	0.701	1.531	M6
KF50	OSP-P50	170	480	480	4000	7500	7.328	0.936	2.760	M8

* Add the mass of the guide carriage to the mass to be cushioned.

G


Rodless Pneumatic Cylinders

OSP-P Series

P1X Series

Ordering information for OSP-P rodless KF pneumatic series

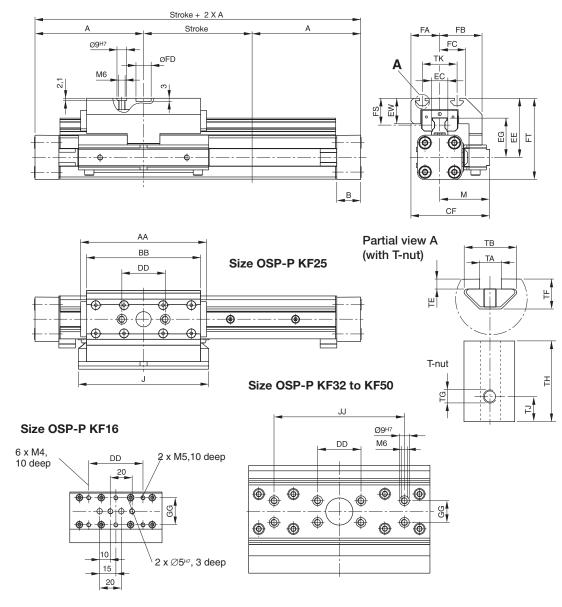
Pneumatic Division Richland, Michigan www.parker.com/pneumatics G

Rodless Pneumatic

0SP-P Series

P1X Series

P1Z Series


GDL Series

Cylinders

ЯП

Series OSP-P KF16 to KF50

Dimension (mm) Series OSP-P KF16, KF25, KF32, KF40, KF50

OSP-P Series	Dimen	sion (m	m) Serie	es OSP-l	P KF16, K	F25, KF	32, KF40), KF50							
γP	Series	А	В	J	AA	BB	CF	DD	EC	EE	EG	EW	JJ	GG	М
	KF16	65	14	76	93	85	48	50	15	41	24.6	10	-	25	30
Se L	KF25	100	22	120	120.2	105	72.5	40	15	54.5	36.2	23.5	-	-	46
P1X Series	KF32	125	25.5	160	146.2	131	93.8	40	15	60.5	42.2	23.5	-	20	59.8
07	KF40	150	28	150	188.5	167	103.3	40	20	69.5	51.6	26.5	120	20	60.8
	KF50	175	33	180	220.2	202	121	40	23	90.5	62.3	32.5	120	40	69
P1Z Series	Series	FA	FB	FC	FD	FT	FS	ТА	тв	TE	TF	TG	тн	ТJ	тк
es	KF16	17.7	29	16.5	_	56	19	_	_	_	_	_	_	_	_
	KF25	26.5	39	24	14 G7	75	24.7	5	12.1	2.3	6.9	M5	11.5	4	32
ς Ω	KF32	34	53.8	34	25 G7	86.5	24.7	5	12.1	1.8	6.4	M5	11.5	4	47
GDL Series	KF40	42.5	56.8	41	25 G7	104	26	6	12.8	1.8	8.4	M6	17	5.5	55
ù.	KF50	52	65	50	25 G7	134	38	8	21.1	4.5	12.5	M8	23	7.5	72

Parker

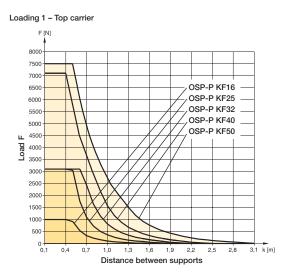
G

Rodless Pneumatic Cylinders

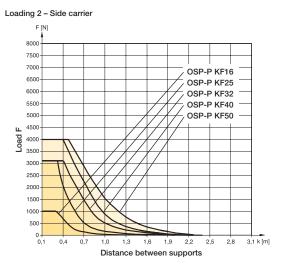
Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

Rodless Pneumatic Cylinders OSP-P Series, Ball Bearing Guide KF

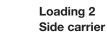
Mid-Section Support


(For versions, see pages G84-G85)

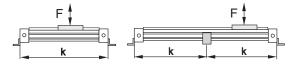
Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading. A distinction must be drawn between loading 1 and loading 2.


Deflection of 0.5 mm max. between supports is permissible

Note: For speeds v > 0.5 m/s the distance between supports should not exceed 1 m.


Permissible Unsupported Length OSP-P KF16 to KF50 Loading 1 – Top carrier

Permissible Unsupported Length OSP-P KF16 to KF50 Loading 2 – Side carrier



Loading 1

Top carrier

Variable Stop Type VS16 to VS50

The variable stop Type VS provides simple stroke limitation.

It can be retrofitted and positioned anywhe e along the stroke length. For every cylinder diameter two types of shock absorber are available – see "Shock Absorber Selection" below.

Mid-section supports and magnetic switches can still be fitted on the same side as the variable stop.

Depending on the application, two variable stops can be fitted if required.

Shock Absorber Selection

The shock absorber is selected in dependence on the mass and speed.

The mass of the carrier itself must be taken into account.

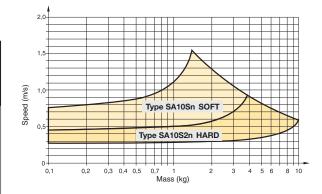
Series OSP-KF16

G

Rodless Pneumatic

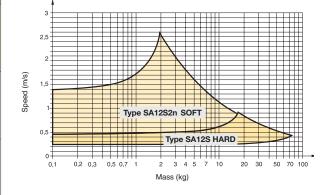
Cylinders

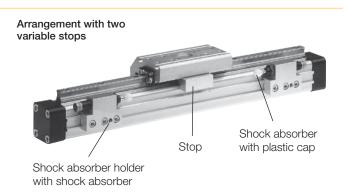
Series


OSP-P

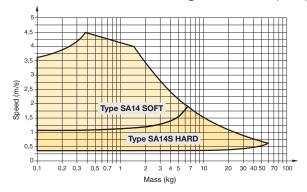
P1X Series

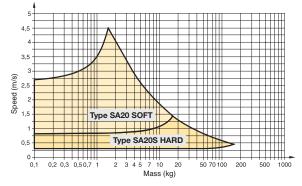
Series


P1Z

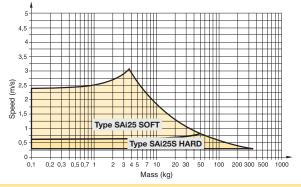

GDL Series The values relate to an effective driving force of 78 N (6 bar)

Series OSP-KF25


The values relate to an effective driving force of 250 N (6 bar)


Series OSP-KF32

The values relate to an effective driving force of 420 N (6 bar)

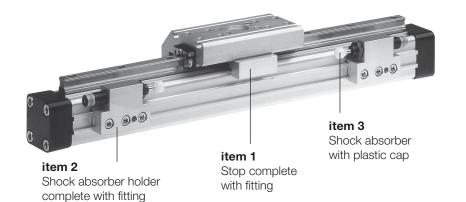

Series OSP-KF40

The values relate to an effective driving force of 640 N (6 bar)

Series OSP-KF50

The values relate to an effective driving force of 1000 N (6 bar)

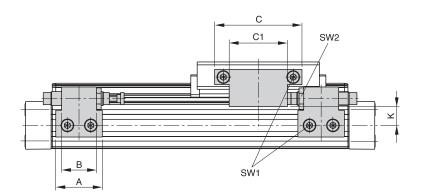
Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics



For inventory, lead times, and kit lookup, visit www.pdnplu.com

G68

Ordering information – Variable Stop Type VS16 to VS50


- without shock absorber

		VS16		VS25		VS32		VS40		VS50	
Item	Description	Туре	Part number	Туре	Part number	Туре	Part number	Туре	Part number	Туре	Part number
1	Stop, complete	_	21186FiL	-	21187FiL	_	21188FiL	_	21189FiL	_	21290FiL
2	Shock absorber holder, complete	_	21201FiL	_	21202FiL	_	21203FiL	_	21204FiL	-	21205FiL
3 *	Shock absorber, standard	SA10SN	MC25M	SA12S2N	MC75M-1	SA14	MC150M-B	SA20	MC225M	SAI25	MC600M
	Shock absorber, version S	SA10S2N	MC25MH	SA12S	MC75M-2	SA14S	MC150MH-B	SA20S	MC225MH	SAI25S	MC600MH

* Shock absorber with plastic cap

Dimension – Variable Stop Type VS16 to VS50

Dimension (mm) – Variable Stop Type VS16 to VS50

Series	Туре	Α	в	С	C1	D	Е	G	н	к	L	М	Ν	Р	SW1	SW2
OSP-KF16	VS16	30	14	50	25	33	29.7	28	38	16.2	25.5	20.5	40.5	M10 x 1	4	12.5
OSP-KF25	VS25	40	30	75	50	41.5	37	33	43	18	31.5	23	48	M12 x 1	5	16
OSP-KF32	VS32	60	40	50	-	45.5	41.5	35	45	19	35.5	25	37	M14 x 1.5	5	17
OSP-KF40	VS40	84	52	60	-	64	59	48	63	25.5	50	34	43	M20 x 1.5	5	24
OSP-KF50	VS50	84	-	60	-	75	69	55	70	26.9	57	38	58	M25 x 1.5	5	30

P1X Series

P1Z Series

GDL Series

G69

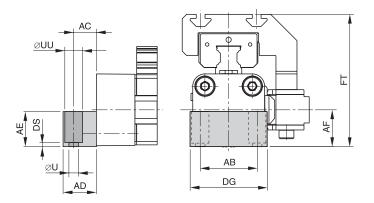
Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

0

D

end Cap Mounting – Type HP Ø 25 to 50mm (correspond to FeSTO dimensions)

For Linear-drive with Recirculating Ball Bearing Guide


• Series OSP-P KF

On the end-face of each end cap there are four threaded holes for mounting the actuator.

Material:

• Anodized aluminum.

The mountings are supplied in pairs.

Note: Correspond to FESTO DGPL-KF, when the End Cap Mountings HP are mounted on the opposite side to the carriage (see drawing)

Dimension (mm)

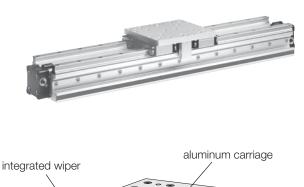
	•										
Series	ØU	AB	AC	AD	AE	AF	DG	DS	FT	ØUU	Part number
HP25	5.5	32.5	13	19	20	21	44	2	75.5	10	21107FiL
HP32	6.6	38	17	24	24	27	52	3	87.5	11	21108FiL
HP40	6.6	45	17.5	24	24	35	68	2	104.5	11	21109FiL
HP50	9	65	25	35	35	48	86	6	138.5	15	21110FiL

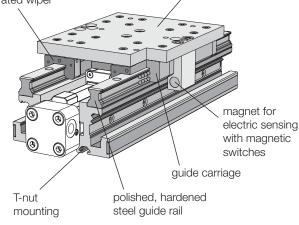
G

Rodless Pneumatic Cylinders

OSP-P Series

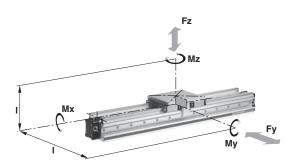
Heavy Duty Guide HD 25 to 50mm bore


Series HD 25 to 50 for Linear-drive


• Series OSP-P

Features

- Guide system: 4-row recirculating ball bearing guide
- Polished and hardened steel guide rail
- For highest loads in all directions
- Highest precision
- Integrated wiper system
- Integrated grease nipples
- Any lengths of stroke up to 3700 mm (longer strokes on request)
- Anodized aluminum guide carriage
 dimensions compatible with OSP guide GUIDELINE
- Maximum speed v = 5 m/s


Loads, Forces and Moments

The table shows the maximum permissible loads. If multiple moments and forces act upon the cylinder simultaneously, the following equation applies:

$$\frac{Mx}{Mxmax} + \frac{My}{Mymax} + \frac{Mz}{Mzmax} + \frac{Fy}{Fymax} + \frac{Fz}{Fzmax} \le 1$$

The sum of the loads should not exceed >1.

The table shows the maximum permissible values for light, shock-free operation which must not be exceeded even under dynamic conditions.

Series		Max. moments (Nm)			Max. loa	ds (N)	Mass of the			
	for linear drive	Mx	Му	Mz	Fz	Fy	with 0mm stroke	increase per 100mm stroke	Mass * guide carriage (kg)	
HD 25	OSP-P25	260	320	320	6000	6000	3.065	0.924	1.289	
HD 32	OSP-P32	285	475	475	6000	6000	4.308	1.112	1.367	
HD 40	OSP-P40	800	1100	1100	15000	15000	7.901	1.748	2.712	
HD 50	OSP-P50	1100	1400	1400	18000	18000	11.648	2.180	3.551	-

* Add the mass of the guide carriage to the mass to be cushioned.

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics P1X Series

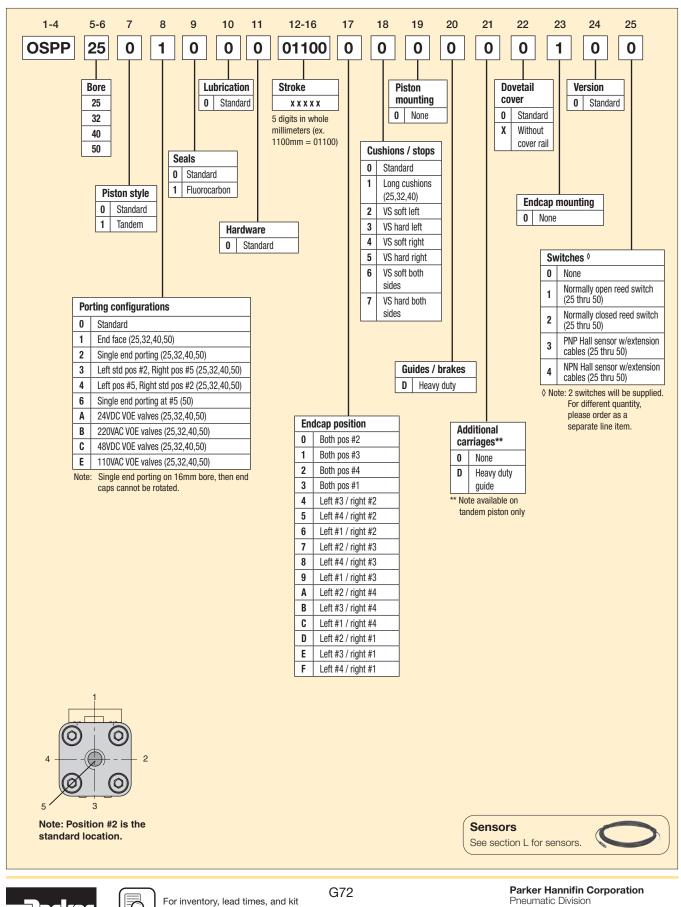
P1Z Series

GDL Series G

Rodless Pneumatic

Cylinders

OSP-P Series

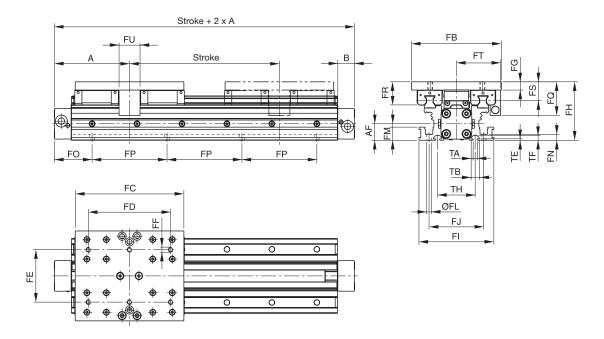

P1X Series

P1Z Series

GDL Series

Ordering information for OSP-P rodless HD pneumatic series

lookup, visit www.pdnplu.com



Pneumatic Division Richland, Michigan www.parker.com/pneumatics

Series OSP-P HD 25 to 50mm

Note: The HD heavy duty guide must be mounted on a flat surface for its entire length.

If T-grooves or T-bolts are used, the distance between them should not exceed 100 mm.

Variable Stop Type VS25 to VS50

The variable stop provides simple stroke limitation and can be supplied mounted on the right or left, as required.

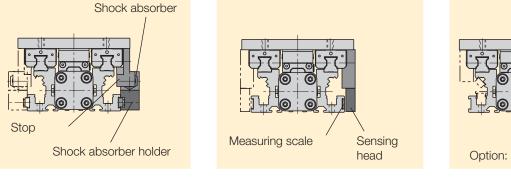
For further information see Variable Stop page G75.

For shock absorber selection see page G62.

incremental displacement measuring system ORiGA-Sensofle

Series SFI-plus can be supplied mounted on the right or left, as required.

For further information see page G95.


Arrangement of magnetic switches:

Magnetic switches can be fitted anywhere on either side.

For further information see following data sheets:

Magnetic Switches see pages G87-G92.

Dovetail Cover see page G93

Magnetic switch Rodless Pneumatic Cylinders

G

P1X Series

P1Z Series

GDL Series

For inventory, lead time, and kit lookup, visit www.pdnplu.com

G73

Catalog 0900P-6 **Dimensional Data**

Rodless Pneumatic Cylinders OSP-P Series, Heavy Duty Guide HD

Series	Α	в	AF	FB	FC	FD	FE	FF	FG	FH	FI	FJ	ØFL
HD25	100	22	22	120	145	110	70	M6	11	78	100	73	6
HD32	125	25.5	30	120	170	140	80	M6	11	86	112	85	6
HD40	150	28	38	160	180	140	110	M8	14	108	132	104	7.5
HD50	175	33	48	180	200	160	120	M8	14	118	150	118	7.5
Series	FM	FN	FP	FQ	FR	FS	FT	FU	TA	ТВ	TE	TF	тн
HD25	17.5	8	100	45	31	25	59	28	5.2	11.5	1.8	6.4	50
HD32	17.5	8	100	45	31	25	63	30	5.2	11.5	1.8	6.4	60
HD40	22	10	100	58	40	31.5	76	30	8.2	20	4.5	12.3	66
HD50	22	10	100	58	44	35.5	89	30	8.2	20	4.5	12.3	76

that for x = 25 mm: FO = 62.5 mm

For a cylinder OSP-P25 the adjacent table indicates

Note:

Х 00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 33

G

Rodless Pneumatic Cylinders

OSP-P Series

P1X Series

Series P1Z

GDL Series

The dimension FO is derived from the last two digits of the stroke:

Example:

Stroke 1525 mm

	FC OSP					FC OSP					F(OSF	
HD25	HD32	HD40	HD50	х	HD25	HD32	HD40	HD50	х	HD25	HD32	H
50.0	75.0	50.0	75.0	34	67.0	42.0	67.0	92.0	68	34.0	59.0	6
50.5	75.5	50.5	75.5	35	67.5	42.5	67.5	92.5	69	34.5	59.5	8
51.0	76.0	51.0	76.0	36	68.0	43.0	68.0	93.0	70	35.0	60.0	8
51.5	76.5	51.5	76.5	37	68.5	43.5	68.5	43.5	71	35.5	60.5	8
52.0	77.0	52.0	77.0	38	69.0	44.0	69.0	44.0	72	36.0	61.0	
52.5	77.5	52.5	77.5	39	69.5	44.5	69.5	44.5	73	36.5	61.5	8
53.0	78.0	53.0	78.0	40	70.0	45.0	70.0	45.0	74	37.0	62.0	8
53.5	78.5	53.5	78.5	41	70.5	45.5	70.5	45.5	75	37.5	62.5	8
54.0	79.0	54.0	79.0	42	71.0	46.0	71.0	46.0	76	38.0	63.0	
54.5	79.5	54.5	79.5	43	71.5	46.5	71.5	46.5	77	38.5	63.5	3
55.0	80.0	55.0	80.0	44	72.0	47.0	72.0	47.0	78	39.0	64.0	3
55.5	80.5	55.5	80.5	45	72.5	47.5	72.5	47.5	79	39.5	64.5	3
56.0	81.0	56.0	81.0	46	73.0	48.0	73.0	48.0	80	40.0	65.0	2
56.5	81.5	56.5	81.5	47	73.5	48.5	73.5	48.5	81	40.5	65.5	
57.0	82.0	57.0	82.0	48	74.0	49.0	74.0	49.0	82	41.0	66.0	4
57.5	82.5	57.5	82.5	49	74.5	49.5	74.5	49.5	83	41.5	66.5	2
58.0	83.0	58.0	83.0	50	75.0	50.0	75.0	50.0	84	42.0	67.0	2
58.5	83.5	58.5	83.5	51	75.5	50.5	75.5	50.5	85	42.5	67.5	4
59.0	84.0	59.0	84.0	52	76.0	51.0	76.0	51.0	86	43.0	68.0	
59.5	84.5	59.5	84.5	53	76.5	51.5	76.5	51.5	87	43.5	68.5	2
60.0	85.0	60.0	85.0	54	77.0	52.0	77.0	52.0	88	44.0	69.0	2
60.5	85.5	60.5	85.5	55	77.5	52.5	77.5	52.5	89	44.5	69.5	2
61.0	36.0	61.0	86.0	56	78.0	53.0	78.0	53.0	90	45.0	70.0	4
61.5	36.5	61.5	86.5	57	78.5	53.5	78.5	53.5	91	45.5	70.5	2
62.0	37.0	62.0	87.0	58	79.0	54.0	79.0	54.0	92	46.0	71.0	2
62.5	37.5	62.5	87.5	59	79.5	54.5	79.5	54.5	93	46.5	71.5	4
63.0	38.0	63.0	88.0	60	80.0	55.0	80.5	55.0	94	47.0	72.0	4
63.5	38.5	63.5	88.5	61	80.5	55.5	80.5	55.5	95	47.5	72.5	4
64.0	39.0	64.0	89.0	62	81.0	56.0	81.0	56.0	96	48.0	73.0	4
64.5	39.5	64.5	89.5	63	81.5	56.5	81.5	56.5	97	48.5	73.5	2
65.0	40.0	65.0	90.0	64	82.0	57.0	82.0	57.0	98	49.0	74.0	4
65.5	40.5	65.5	90.5	65	32.5	57.5	82.5	57.5	99	49.5	74.5	4
66.0	41.0	66.0	91.0	66	33.0	58.0	83.0	58.0				
66.5	41.5	66.5	91.5	67	33.5	58.5	83.5	58.5	_			

C

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

HD40

84.0

84.5

85.0

85.5

86.0

86.5

87.0

87.5

88.0

38.5

39.0

39.5

40.0

40.5

41.0

41.5

42.0

42.5

43.0

43.5

44.0

44.5

45.0

45.5

46.0

46.5

47.0

47.5

48.0

48.5

49.0

49.5

HD50

59.0

59.5

60.0

60.5

61.0

61.5

62.0

62.5

63.0

63.5

64.0

64.5

65.0

65.5

66.0

66.5

67.0

67.5

68.0

68.5

69.0

69.5

70.0

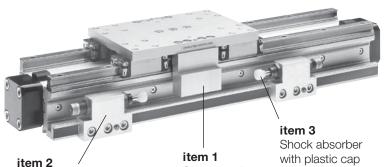
70.5

71.0

71.5

72.0

72.5

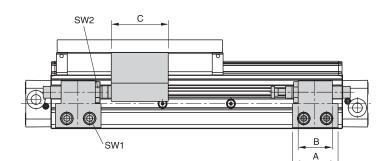

73.0

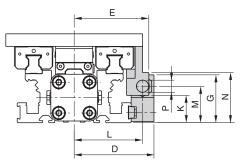
73.5

74.0

74.5

Ordering information – Variable Stop Type VS25 to VS50


Shock absorber holder complete with fitting - without shock absorber


Stop complete with fitting

	Size								
		VS25		VS32		VS40		VS50	
Item	Description	Туре	Part number	Туре	Part number	Туре	Part number	Туре	Part number
1	Stop, complete	_	21257FiL	_	21158FiL	_	21159FiL	_	21260FiL
2	Shock absorber holder, complete	-	21202FiL	-	21203FiL	_	21204FiL	_	21205FiL
3 *	Shock absorber, standard	SA12	MC75M-1	SA14	MC150M-B	SA20	MC225M	SAI25	MC600M
	Shock absorber, version S	SA12S	MC75M-2	SA14S	MC150MH-B	SA20S	MC225MH	SAI25S	МС600МН

* Shock absorber with plastic cap

Dimension – Variable Stop Type VS16 to VS50

G

Rodless Pneumatic Cylinders

0SP-P Series

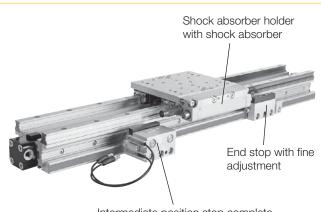
GDL Series

Series	Туре	А	в	С	D	Е	G	к	L	М	Ν	Р	SW1	SW2	ies ×
OSP-HD25	VS25	40	30	50	70	65.5	42	26	60	32	42	M12 x 1	5	16	er P1
OSP-HD32	VS32	60	40	54	73	71	44	28	63	34	53	M14 x 1.5	5	17	- v
OSP-HD40	VS40	84	52	55	96	92	59	35	82	45	61	M20 x 1.5	5	24	-
OSP-HD50	VS50	84	-	60	107	105	66	37	89	49	66	M25 x 1.5	5	30	z ies
															P1 Seri

Shock Absorber Selection

For shock absorber selection in dependence on mass and speed see page G68.

intermediate Stop Module - 25mm only


The intermediate stop module ZSM allows the guide carriage to stop at any desired intermediate positions with high accuracy. It can be retrofitted. Depending on the application, i.e. the number of intermediate stops, one or more intermediate position stops can be used.

The intermediate position stops can be retracted and extended without the need for the guide carriage to be moved back out of position.

Therefore the guide carriage can be made to stop at the defined intermediate positions in any o der.

ORIGA intermediate stop moduule ZSM:

- · Allows stopping at any intermediate positions
- Intermediate position stops can be located steplessly anywhere along the whole stroke length
- · Movement to the next position without reverse stroke
- Compact unit
- Cost-effective positioning module without electrical or electronic components
- Option: end stop with fine adjustmen

Intermediate position stop complete with/without magnetic switch option

Operating information

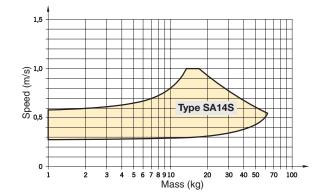
Operating pressure: Temperature range: Intermediate position grid: 87 to 116 PSIG (4 to 8 bar) 14°F to 158°F (-10°C to 70°C) 85mm

Shock Absorber

Type SA14S

G

Rodless Pneumatic

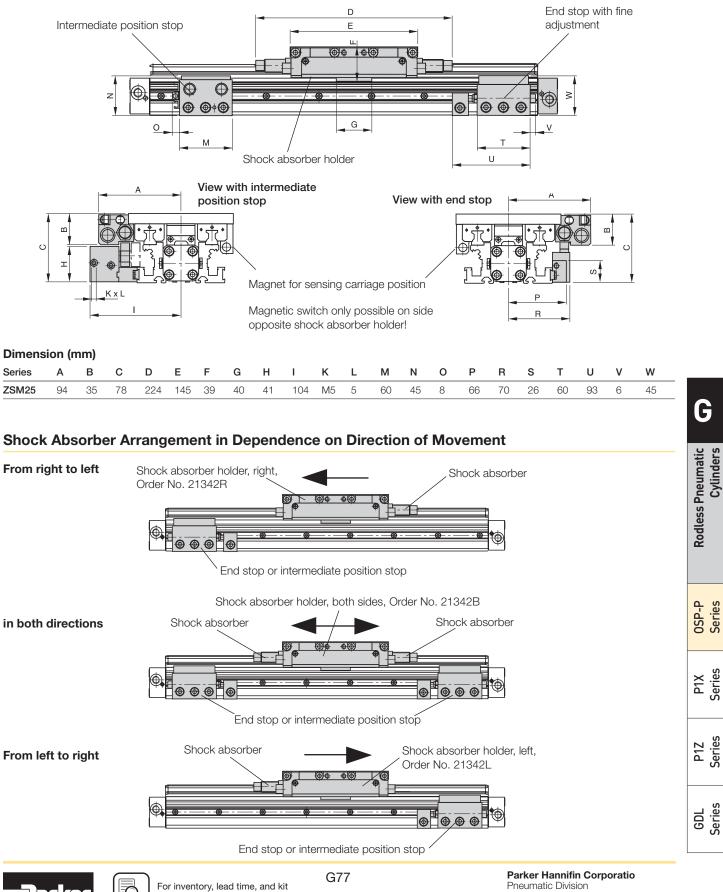

Cylinders

OSP-P Series

P1X Series

P1Z Series

GDL Series The values relate to an effective driving force of 250 N (6 bar)



ЬТ

lookup, visit www.pdnplu.com

intermediate Stop Module - Type ZSM..HD

Richland, Michigan www.parker.com/pneumatics G

Order instructions – intermediate Stop Module Type ZSM..HD

Illustration shows version with shock absorber holder for movement in both directions and magnetic switch option with T-slot switches.

Note: For movement onwards from the intermediate position, the intermediate position stop must advance.

The intermediate position stop can only advance if both cylinder chambers of the OSP-P vylinder are pressurized.

item 1, 2, 3 Shock absorber holder with shock absorber SA14S optionally for movements to the left or right or in both directions

> item 6 End stop with fine adjustmen

item 4, 5

Intermediate position stop, complete, with/without magnetic switch option

Order instructions - intermediate stop module Type ZSM..HD 25mm Only

Item	Description	Part number
1*	Shock absorber holder with shock absorber SA14S, both sides	21342BFiL
2*	Shock absorber holder with shock absorber SA14S, left	21342LFiL
3*	Shock absorber holder with shock absorber SA14S, right	21342RFiL
4	Intermediate position stop complete, without magnetic switch option	21343FiL
5	Intermediate position stop complete, with magnetic switch option	21344FiL
6	End stop with fine adjustmen	21346FiL
	1* 2* 3* 4 5	1* Shock absorber holder with shock absorber SA14S, both sides 2* Shock absorber holder with shock absorber SA14S, left 3* Shock absorber holder with shock absorber SA14S, right 4 Intermediate position stop complete, without magnetic switch option 5 Intermediate position stop complete, with magnetic switch option

* The shock absorbers are installed in the shock absorber holder and adjusted in our workshop.

G

Mountings for Linear Drives fitted with OSP-Guide

For Linear-drive

• Series OSP-P

				PI		١E		Т	jpe –	OSP	Guide	Р	OWEI		DE				
Mounting Type	Туре	16†	25	MUI 32	_TIBR 40	AKE 50	63 t	80 †	16/ 25	25/ 25	25/ 35	25/ 44	32/ 35	32/ 44	40/ 44	40/ 60	50/ 60	50/ 76	
End cap mounting	Type A1	X	20						x	20									
1000	Type A2	0	0	ο															
Ă	Туре АЗ									0	0		0						
End cap mounting, reinforced	Type B1		х	х						х	х	х	х	х					
1	Туре ВЗ								0										
	Type B4											0		0					
	Туре В5																		
End cap mounting	Type C1				х	x	x	x							х	х	х	x	
- in the second	Type C2				0	0													
	Туре СЗ						0	0							0		0		
	Type C4															0		ο	
Mid-Section support, small	Type D1	x	х	x	х	x	x	x	x	x	x	х	x	x	x	x	x	x	_
Mid-Section support, wide	Type E1	x	х	x	x	x	x	x	x	X	х	х	x	x	x	x	х	x	
	Type E2	0	0	0	0	0													
A A	Type E3						0	ο	0	0	0		0		0		0		
	Type E4											0		0		0		ο	
	Type E5																		

= carriage mounted in top (12 o'clock position) Х

Ο carriage mounted in lateral (3 or 9 o'clock position) =

available components =

= not available for all sizes t

G79

G

end Cap Mountings

Four internal screw threads are located in the end faces of all OSP actuators for mounting the drive unit. End cap mountings may be secured across any two adjacent screws.

Material:

Dimension (mm)

16

_

_

55

_

_

_

_ _ _ 56 77

Mount.

type

A1

A2

A3

B1

B3

B4

B5

C1

C2

C3

C4

G

Rodless Pneumatic

Cylinders

Series OSP-P

P1X Series

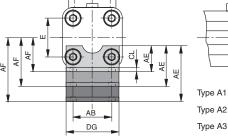
Series P1Z

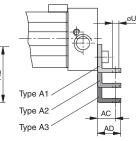
GDL Series

- Series OSP-16, 25, 32: Galvanized steel
- Series OSP-40, 50, 63, 80: Anodized aluminum

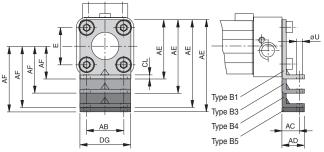
The mountings are supplied in pairs.

Series OSP-P16, 25, 32: Type A

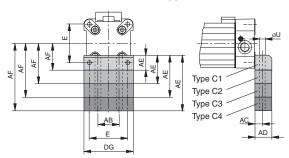

Ae and AF (Dependent on the mounting type) Dimensions AE for size AF for size 25 32 40 50 63 80 16 25 32 40 50 63 80 12.5 18 30 20 15 22 27.5 33 34 _ 30 37 44 _ _ _ 45 42 _ 49 52 42 55 22 30 _ _ _ _ _ _ _ _ _ 42 80 85 _ _ _ _ _ 60 60 _ _ _ _ 90 _ _ _ 65 _ _ _ 30 40 50 48 57 72 _ _ 24 _ 38 37 39 51 57 _ 46 54 76 88 60 72 93 110


70 95 _ _

Series	Е	øU	AB	AC	AD	CL	DG
OSP-P16	18	3.6	18	10	14	1.6	26
OSP-P25	27	5.8	27	16	22	2.5	39
OSP-P32	36	6.6	36	18	26	3	50
OSP-P40	54	9	30	12.5	24	_	68
OSP-P50	70	9	40	12.5	24	-	86
OSP-P63	78	11	48	15	30	-	104
OSP-P80	96	14	60	17.5	35	-	130


_

_ _ _



Series OSP-P16, 25, 32: Type B

Series OSP-P40, 50, 63, 80: Type C

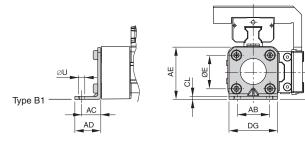
For inventory, lead times, and kit lookup, visit www.pdnplu.com

G80

end Cap Mountings - Type B Ø 16 to 32mm

For Linear-drive with Recirculating Ball Bearing Guide

- Series OSP-P STL
- Series OSP-P KF


Material:

- Galvanized steel
- Anodized aluminum

The mountings are supplied in pairs. Drawing shows: Mounting with Guide Type STL

Type B1: 16, 25, 32mm Series OSP-P STL and KF

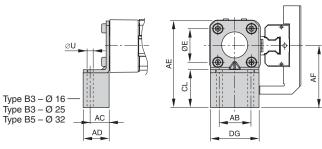
Installation: Top carrier Side piston

Type B3: 16, 25mm Type B5: 32mm Series OSP-P STL and KF

Installation: Side carrier Piston below

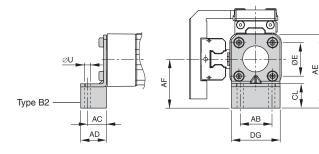
G

Rodless Pneumatic


0SP-P Series

Series

Series


Series

Cylinders

Type B2: 16, 25, 32mm Series OSP-P STL and KF

Installation: Side carrier Top piston

Dimension (mm), Type B

Series Type	Mounting	Е	ØU	AB	AC	AD	AE	AF	CL	DG	Part number (pair)	P1X
OSP-P STL16	B1	18	3.6	18	10	14	28	15	2	26	21135FiL	
OSP-P KF16	B2	18	3.6	18	10	14	43	30	17	26	21136FiL	
	B3	18	3.6	18	10	14	55	42	29	26	21137FiL	
OSP-P STL25	B1	27	5.8	27	16	22	42	22	2.5	39	20311FiL	P1Z
OSP-P STL25 OSP-P KF25	B2	27	5.8	27	16	22	57	37	17.5	39	21138FiL	
	B3	27	5.8	27	16	22	69	49	29.5	39	21139FiL	
OSP-P STL32	B1	36	6.6	36	18	26	55	30	3	50	20313FiL	
OSP-P KF32	B2	36	6.6	36	18	26	69	44	17	50	21140FiL	GDL
	B5	36	6.6	36	18	26	90	65	9	50	21141FiL	

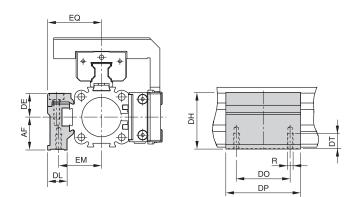
Parker Hannifin Corporatio Pneumatic Division

Richland, Michigan www.parker.com/pneumatics

Mid-Section Support – Type D1ST Ø 16 to 50mm

For Linear-drive with Recirculating Ball **Bearing Guide**

- Series OSP-P STL
- Series OSP-P KF


Note: on Types D1ST

The mid-section support can also be mounted on the underside of the actuator, in which case its distance from the center of the actuator is different.

Drawing shows: Mounting with Guide Type STL Mountings from below with 2 screws

Type D1ST: 16 to 50mm Series OSP-P STL and KF

Dimension (mm), Type D1ST

Series OSP-P	Mounting	R	AF	DE	DH	DL	DO	DP	DT	EM	EQ	Part number
STL/KF16	D1ST	MЗ	15	14.2	29.2	14.6	18	30	6.5	20	27	21125FiL
STL/KF25	D1ST	M5	22	16	38	13	36	50	10	28.5	36	21126FiL
STL/KF32	D1ST	M5	30	16	46	13	36	60	10	35.5	43	21127FiL
STL/KF40	D1ST	M6	38	23	61	19	45	60	11	38	48	21128FiL
STL/KF50	D1ST	M6	48	23	71	19	45	60	11	45	57	21129FiL

Order example: Type D1ST16 Part number: 21125FIL

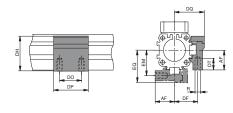
Series OSP-P

G

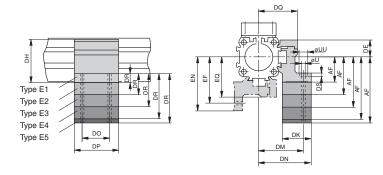
Rodless Pneumatic Cylinders

Mid-Section Support

Information regarding type E1 and D1:


Mounting of the Mid-Section supports is also possible on the lower side of the drive. In this case, please note the new center line dimensions.

Stainless steel version on request.


Series OSP-P16 to 80: Type D1

(Mounting from below with thread screw)

Series OSP-P16 to 80: Type e

(Mounting from above / below using a cap screw)

Dimension (mm) - AF and DR (Dependent on the mounting type)

Mount.	DR	for si	ze					AF 1	for si	ze				
type	16	25	32	40	50	63	80	16	25	32	40	50	63	80
D1	-	-	-	-	-	-	-	15	22	30	38	48	57	72
E1	6	8	10	10	10	12	15	15	22	30	38	48	57	72
E2	21	23	24	23	19	-	_	30	37	44	51	57	-	_
E3	33	35	32	32	34	48	53	42	49	52	60	72	93	110
E4	-	46	40	42	57	-	_	_	60	60	70	95	-	_
E5	-	-	45	-	-	-	-	-	-	65	-	-	-	

Dimension Table (mm)

		• (-,															
Series	R	U	UU	DE	DF	DH	DK	DM	DN	DO	DP	DQ	DS	DT	EF	EM	EN	EQ
OSP-P16	M3	3.4	6	14.2	20	29.2	24	32	36.4	18	30	27	3.4	6.5	32	20	36.4	27
OSP-P25	M5	5.5	10	16	27	38	26	40	47.5	36	50	34.5	5.7	10	41.5	28.5	49	36
OSP-P32	M5	5.5	10	16	33	46	27	46	54.5	36	50	40.5	5.7	10	48.5	35.5	57	43
OSP-P40	M6	7	_	23	35	61	34	53	60	45	60	45	-	11	56	38	63	48
OSP-P50	M6	7	-	23	40	71	34	59	67	45	60	52	-	11	64	45	72	57
OSP-P63	M8	9	-	34	47.5	91	44	73	83	45	65	63	-	16	79	53.5	89	69
OSP-P80	M10	11	_	39.5	60	111.5	63	97	112	55	80	81	_	25	103	66	118	87

Ordering information for mountings – Type A, Type B, Type C, Type D, Type e

Mounting type	Part number							-
(versions)	16	25	32	40	50	63	80	
A1 †	20408FiL	2010	3010	-	-	-	-	
A2†	20464FiL	2040	3040FiL	-	-	-	-	_
A3†	-	2060FiL	3060FiL	-	-	-	-	Solution
B1 †	-	20311FiL	20313FiL	-	-	-	-	- SO
B3†	20465FiL	-	-	-	-	-	-	
B4†	-	20312FiL	20314FiL	-	-	-	-	
B5†	-	-	20976FiL	-	-	-	-	_ ×
C1 †	-	-	-	4010FiL	5010FiL	6010FiL	8010FiL	P1X
C2†	-	-	-	20338FiL	20349FiL	-	-	
C3†	-	-	-	20339FiL	20350FiL	20821FiL	20822FiL	
C4†	-	-	-	20340FiL	20351FiL	-	-	N
D1	20434FiL	20008FiL	20157FiL	20027FiL	20162FiL	20451FiL	20480FiL	P1Z
E1	20435FiL	20009FiL	20158FiL	20028FiL	20163FiL	20452FiL	20482FiL	
E2	20436FiL	20352FiL	20355FiL	20358FiL	20361FiL	-	-	
E3	20437FiL	20353FiL	20356FiL	20359FiL	20362FiL	20453FiL	20819FiL	
E4	-	20354FiL	20357FiL	20360FiL	20363FiL	-	-	GDL
E5	-	-	20977FiL	-	-	-	-	
+ B :								_

† Pair

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics G

Rodless Pneumatic Cylinders

Series

Series

Series

Series

Mid-Section Support – Type e1ST to e5ST Ø 16 to 50mm

Н

For Linear-drive with Recirculating Ball **Bearing Guide**

- Series OSP-P STL
- Series OSP-P KF

Type E1ST

DK

EF

ΕN

出

₽

G

Rodless Pneumatic

Cylinders

щ

Drawing shows: Mounting with Guide Type STL Mountings from below with 2 screws

Type e1ST: 16 to 50mm Series OSP-P STL and KF

EQ

øU

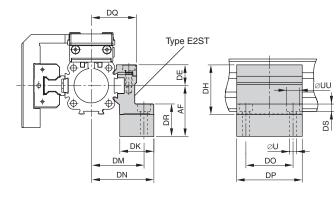
DO

DP

⊘UU

SD

Piston below



(4)(4)⁽⁴⁾

Type e2ST: 16 to 50mm Series OSP-P STL and KF

Installation: Side carrier Top piston

Type e3ST, e4ST, e5ST: 25 to 50mm Installation: Side carrier Series OSP-P STL and KF

q

7

Dimension (mm), Type e1ST to e5ST

OSP-P Series	Series OSP-P	Mounting	ØU	ØUU	AF	DE	DH	DK	DM	DN	DO	DP	DR	DQ	DS	EF	EN	EQ	Part number
ά, γ	STL/KF16	E1ST	3.4	6	15	14.2	29.2	24	32	36.4	18	30	6	27	3.4	32	36.4	27	21130FiL
	STL/KF16	E2ST	3.4	6	30	14.2	29.2	24	32	36.4	18	30	21	27	3.4	32	36.4	27	21142FiL
<i>(</i> 0	STL/KF25	E1ST	5.5	10	22	16	38	26	40	47.5	36	50	8	34.5	5.7	41.5	49	36	21131FiL
P1X Series	STL/KF25	E2ST	5.5	10	37	16	38	26	40	47.5	36	50	23	34.5	5.7	41.5	49	36	21143FiL
ies	STL/KF25	E3ST	5.5	10	49	16	38	26	40	47.5	36	50	35	34.5	5.7	41.5	49	36	21148FiL
	STL/KF32	E1ST	5.5	10	30	16	46	27	46	54.5	36	60	10	40.5	5.7	48.5	57	43	21132FiL
	STL/KF32	E2ST	5.5	10	44	16	46	27	46	54.5	36	60	24	40.5	5.7	48.5	57	43	21144FiL
Sег	STL/KF32	E5ST	5.5	10	65	16	46	27	46	54.5	36	60	45	40.5	5.7	48.5	57	43	21151FiL
P1Z Series	STL/KF40	E1ST	7	-	38	23	61	34	53	60	45	60	10	45	-	56	63	48	21133FiL
S	STL/KF40	E2ST	7	-	51	23	61	34	53	60	45	60	23	45	-	56	63	48	21145FiL
	STL/KF40	E4ST	7	-	70	23	61	34	53	60	45	60	42	45	-	56	63	48	21150FiL
S	STL/KF50	E1ST	7	-	48	23	71	34	59	67	45	60	10	52	-	64	72	57	21134FiL
GDL Series	STL/KF50	E2ST	7	-	57	23	71	34	59	67	45	60	19	52	-	64	72	57	21146FiL
es	STL/KF50	E3ST	7	-	72	23	71	34	59	67	45	60	34	52	-	64	72	57	21149FiL
	Order evem				. la ave. C														

Order example: Type E1ST16 Part number: 21130FIL

Mid-Section Support – Type MUP Ø 25 to 50mm (correspond to FeSTO dimensions)

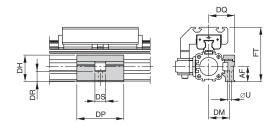
For Linear-drive with Recirculating Ball Bearing Guide

Series OSP-P KF

Note: Correspond to FESTO DGPL-KF, when the Mid-Section Support MUP are mounted on the 90° side to the carriage (see drawings).

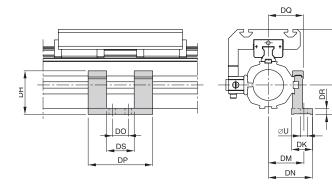
Series OSP-P KF25: Type MUP

(Mounting over through holes)


Series OSP-P KF32 to KF40: Type MUP

(Mounting over through holes)

DO


DS.

DF

Series OSP-P KF50: Type MUP

(Mounting over through holes)

Dimension (mm)

Dimension (mm)											<u> </u>		
ØU	AF	DH	DK	DM	DN	DO	DP	DQ	DR	DS	FT	Part number	SP-
5.5	21	36.9	_	29	_	_	65	36	14.5	15	75.5	21119FiL	0
6.6	27	42.9	_	35	_	22	95	43	20.5	35	87.5	21120FiL	
6.6	35	58	_	40	_	22	95	48	28.5	35	104.5	21121FiL	×
11	48	71	34	58	72	26	105	57	10	45	138.5	21122FiL	P
	5.5 6.6 6.6	5.5 21 6.6 27 6.6 35	5.5 21 36.9 6.6 27 42.9 6.6 35 58	5.5 21 36.9 - 6.6 27 42.9 - 6.6 35 58 -	5.5 21 36.9 - 29 6.6 27 42.9 - 35 6.6 35 58 - 40	5.5 21 36.9 - 29 - 6.6 27 42.9 - 35 - 6.6 35 58 - 40 -	5.5 21 36.9 - 29 - - 6.6 27 42.9 - 35 - 22 6.6 35 58 - 40 - 22	5.5 21 36.9 - 29 - - 65 6.6 27 42.9 - 35 - 22 95 6.6 35 58 - 40 - 22 95	5.5 21 36.9 - 29 - - 65 36 6.6 27 42.9 - 35 - 22 95 43 6.6 35 58 - 40 - 22 95 48	5.5 21 36.9 - 29 - - 65 36 14.5 6.6 27 42.9 - 35 - 22 95 43 20.5 6.6 35 58 - 40 - 22 95 48 28.5	5.5 21 36.9 - 29 - - 65 36 14.5 15 6.6 27 42.9 - 35 - 22 95 43 20.5 35 6.6 35 58 - 40 - 22 95 48 28.5 35	5.5 21 36.9 - 29 - - 65 36 14.5 15 75.5 6.6 27 42.9 - 35 - 22 95 43 20.5 35 87.5 6.6 35 58 - 40 - 22 95 48 28.5 35 104.5	5.5 21 36.9 - 29 - - 65 36 14.5 15 75.5 21119FiL 6.6 27 42.9 - 35 - 22 95 43 20.5 35 87.5 21120FiL 6.6 35 58 - 40 - 22 95 48 28.5 35 104.5 21121FiL

H

DQ t. øU DM

P1Z Series

GDL Series

С

end Cap Mountings – Type C Ø 40 to 50mm

For Linear-drive with Recirculating Ball Bearing Guide

- Series OSP-P STL
- Series OSP-P KF

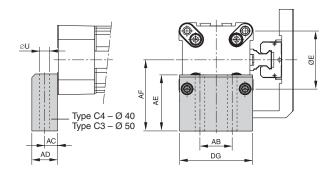
Material:

Anodized aluminum

The mountings are supplied in pairs. Drawing shows: Mounting with Guide Type STL

Type C1: 40, 50mm Series OSP-P STL and KF

øU


Type C1

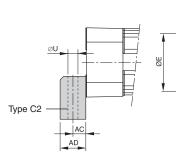
Installation Top carrier Side piston

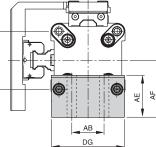
Type C4: 40mm Type C3: 50mm Series OSP-P STL and KF

Installation: Side carrier Piston below

OSP-P Series

Series P1X Type C2: 40, 50mm Series OSP-P STL and KF


AC


AD

щ

Installation: Side carrier Top piston

В

AB

DG

Dimension (mm), Type C

	Series Type	Mounting	Е	ØU	AB	AC	AD	AE	AF	DG	Part number (pair)
P1Z Series	OSP-P STL40 OSP-P KF40	C1	54	9	30	12.5	24	24	38	68	4010FiL
		C2	54	9	30	12.5	24	37	51	68	20338FiL
		C4	54	9	30	12.5	24	56	70	68	20340FiL
	OSP-P STL50	C1	70	9	40	12.5	24	30	48	86	5010FiL
6	OSP-P KF50	C2	70	9	40	12.5	24	39	57	86	20349FiL
GD Seri		C3	70	9	40	12.5	24	54	72	86	20350FiL
es											

G86

Magnetic Switches, Ø10 to 80mm

- Series RS
- Series ES

For electrical sensing of the carrier position, e.g. at the end positions, magnetic switches may be fitted

Position sensing is contactless and is based on magnets fitted as standa d to the carrier. A yellow LED indicates operating status.

The universal magnetic switches are suitable for all PARKER-ORIGA OSP-Actuators and aluminum profile rod type cylinders.

Piston, speed and switching distance affect signal duration and should be considered in conjunction with the minimum reaction time of ancillary control equipment.

Min. reaction time =	Switching distance
wiin. reaction time =	Piston speed

electrical Characteristics

	Type RS	Type ES
Switching output	Reed	PNP, NPN
Operating voltage	10-240 VAC/DC (NO) 10-150 VAC/DC (NC)	10-30 VDC
Residual voltage	< 3 V	< 3 V
Connection	Two wire	Three wire
Output function	normally open normally closed	normally open
Permanent current	200 mA	200 mA
Max. switching capacity	10 VA (W)	_
Power consumption without load	_	< 20 mA
Function indicator	LED, yellow	LED, yellow
Typical switching time	On: < 2 ms	On: < 2 ms
Switch-off delay	_	ca. 25 ms
Pole reversal does not work	LED	_
Pole reversal protection	_	Built in
Short-circuit protection	_	Built in
Switchable capacity load	μF	μF 0.1 at 100 Ω 24 VDC
Switching point accuracy	± 0.2mm	± 0.2mm
Switching distance	ca. 15mm	ca. 15mm
Hysteresis for OSP	ca. 8mm	ca. 3mm
Lifetime	3 x 106, up to 6 x 106 cycles	Theoretically unlimited

Mechanical Characteristics

		Type RS	Type ES			
Housing		Makrolon, smoke color				
Cable cross section	on	2 x 0.14 mm ²	3 x 0.14 mm ²			
Cable type *		PVC	PUR, black			
Bending radius	fixe	≥ 20mm				
	moving	≥ 70mm				
Weight (Mass)		0.012 kg				
Degree of protect	ion	IP67 to DIN EN 60	529			
Ambient temperat	ure range * †	-25°C to 80°C				
Shock resistance		100 m/s ² (contact switches)	500 m/s ²			

* Other versions on request

† For the magnetic switch temperature range, please take into account the surface temperature and the self-heating properties of the linear drive. On request other temperature ranges available.

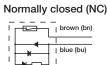
Magnetic Switches RS and eS

electrical Service Life Protective Measures

Magnetic switches are sensitive to excessive currents and inductions. With high switching frequencies and inductive loads such as relays, solenoid valves or lifting magnets, service life will be greatly reduced.

With **resistive and capacitative loads** with high switch-on current, such as light bulbs, a protective resistor should be fitted. This also applies to long cable lengths and voltages over 100 V.

In the switching of inductive loads such as relays, solenoid valves and lifting magnets, voltage peaks (transients) are generated which must be suppressed by protective diodes, RC loops or varistors.


Type RS

In the type RS contact is made by a mechanical reed switch encapsulated in glass.

Direct connection with 2-pole cable, 5 m long, open ended (Type RS-K).

electrical Connection:

LED

Normally open (NO)

Type eS

G

Cylinders

Rodless Pneumatic

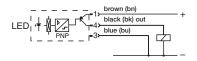
OSP-P Series

Series

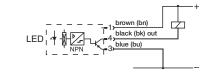
Series

GDL Series

P1X


P1Z

In the type ES contact is made by an electronic switch – without bounce or wear and protected from pole reversal. The output is short circuit proof and insensitive to shocks and vibrations. Connection is by 3-pole connector for easy disconnection. Fitted with connection cable 100 mm long with connector.

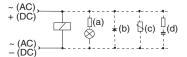

A 5 m cable with connector and open end can be ordered separately, or use the Order No. for the complete Type ES with 5 m cable.

electrical Connection:

Standard Version: Type PNP

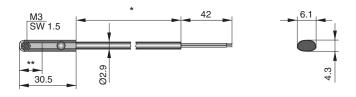
Optional Version: Type NPN

-Parker

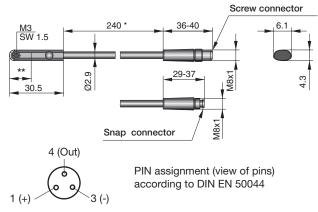

For inventory, lead times, and kit lookup, visit www.pdnplu.com

G88

Connection examples


Load with protective circuits

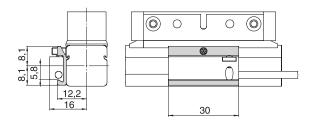
- (a) Protective resistor for light bulb
- (b) Freewheel diode on inductively
- (c) Varistor on inductively
- (d) RC element on inductively


For the type ES, external protective circuits are not normally needed.

Dimensions (mm) – Type RS-K

* Length with possible minus tolerance, see chart below

Dimensions (mm) – Type eS-S

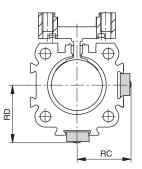


* Length with possible minus tolerance, see chart below

Length of connection cable with length tolerance

Magnetic switch Part number	Nominal cable length	Length tolerance
P8S-GRFDX2	5000mm	– 50mm
P8S-GeFRX1	5000mm	– 50mm
P8S-GPCHX	100mm	– 20mm
P8S-Gn CHX	145mm	± 5mm

Dimensions Series OSP-P10



Note:

Sensors can not be mounted directly opposite of the carrier

Rodless Pneumatic Cylinders **OSP-P Sensors**

Dimensions Series OSP-P16 to 80

Dimensions (mm) and Order information

					Part number				
	Dime	ensions	RS closer	RS opener	ES		ES compl. with 5	m cable	Adapter
Series	RC	RD	Normally open	Normally closed	PNP	NPN	PNP	NPN	only for OSP-P10
OSP-P10	_	_	Туре:	Туре:	Туре:	Туре:	Туре:	Туре:	8872FIL
OSP-P16	20	20.5	RS-K	RS-K	ES-S	ES-S	ES-S	ES-S	(Global)
OSP-P25	25	27	P8S-GRFDX2	P8S-GEFRX1	P8S-GPCHX	P8S-GNCHX	P8S-GRFDX2 +	P8S-GNCHX +	please order separately
OSP-P32	31	34	_				4041	4041	. ,
OSP-P40	36	39	_						
OSP-P50	43	48	-						
OSP-P63	53	59							
OSP-P80	66	72							
Cable 5 m with connector and with open end for					4041				

magnetic switches Type ES-S

4041

 GDL
 P1Z
 P1X
 OSP-P
 Rodless Pneumatic

 Series
 Series
 Series
 Series
 Cylinders

G

Magnetic Switches for T-Slot, Ø10 to 80mm

- Series RST
- Series EST

Magnetic switches are used for electrical sensing of the position of the piston, e.g. at its end positions. They can also be used for sensing of intermediate positions.

Sensing is contactless, based on magnets which are built-in as standard. A yellow LED indicates operating status.

The universal magnetic switches are suitable for all PARKER-ORIGA OSP-Actuators and aluminum profile od type cylinders.

electrical Characteristics

	Type RST	Type EST
Switching output	Reed	PNP
Operating voltage	10-30 VAC/DC	10-30 VDC
Ripple	_	≤ 10%
Voltage drop	≤ 3 V	$\leq 2 V$
Electrical configuratio	2 wire	3 wire
Output function	normally open normally closed	normally open
Permanent current	≤ 100 mA	\leq 100 mA
Breaking capacity	≤ 6 peak W	-
Power consumption, at UB = 24V, switched on, without load	-	≤ 10 mA
Function indicator	LED, yellow (not for normally closed)	LED, yellow (not for normally closed)
Response time	≤ 2 ms	≤ 0.5 ms
Sensitivity	2 – 4 mT	2 – 4 mT
Time delay before availability	-	$\leq 2 \text{ ms}$
Reverse polarity prot.	yes	yes
Short-circuit protection	no	yes (pulsed)
Switchable capacity load	μF	0.1 at 100 Ω, 24 VDC
Switching frequency	≤ 400 Hz	≤ 5 k
Repeatability	≤ 0.2mm	≤ 0.2mm
Hysteresis	≤ 1.5mm	≤ 1.5mm
EMC	EN 60947-5-2	EN 60947-5-2
Lifetime	\geq 35 Mio. cycles with PLC load	unlimited
Power-up pulse suppression	-	yes
Protection for inductive load	_	yes

Mechanical Characteristics

	Type RST	Type EST				
Housing	Plastic / PA66 + PA6l red					
Cable cross section	2 x 0.14 mm ²	3 x 0.14 mm ²				
Cable type	PUR, black	PUR, black				
Bending radius	≥ 36mm	≥ 30mm				
Weight (Mass)	ca. 0.030 kg (RST-K) ca. 0.010 kg (RST-S)	ca. 0.030 kg (EST-K) ca. 0.010 kg (EST-S)				
Degree of protection	IP67 to EN 60529					
Ambient temperature range †	-25 to 80°C	-25 to 75°C at U _B =10 – 30 V				
- with adapter	-25 to 60°C	-25 to 80 °C at Uв=10 – 28 V				
Adapter tightening torque	0.15 Nm (tightenin of screwing adapte	0 1				
Shock resistance						
Vibration to EN 60068-2-6	G 15, 11 ms, 10 to 55 Hz, 1 mm					
Shock to EN 60068-2-27	G 50, 11 ms					
Bump to EN 60068-2-29	G 30, 11 ms, 1000 bumps each axis					

+ For the magnetic switch temperature range, please take into account the surface temperature and the self-heating properties of the linear drive.

GDL Series

G

Rodless Pneumatic Cylinders

OSP-P Series

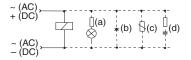
P1X Series

P1Z Series

Magnetic Switches RST and eST

electrical Service Life Protective Measures

Magnetic switches are sensitive to excessive currents and inductions. With high switching frequencies and inductive loads such as relays, solenoid valves or lifting magnets, service life will be greatly reduced.


With **resistive and capacitative loads** with high switch-on current, such as light bulbs, a protective resistor should be fitted. This also applies to long cable lengths and voltages over 100 V.

In the switching of inductive loads such as relays, solenoid valves and lifting magnets, voltage peaks (transients) are generated which must be suppressed by protective diodes, RC loops or varistors.

Connection examples

Load with protective circuits

- (a) Protective resistor for light bulb
- (b) Freewheel diode on inductively
- (c) Varistor on inductively
- (d) RC element on inductively

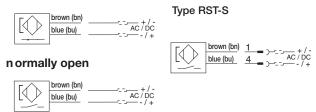
For the type EST, external protective circuits are not normally needed.

42

Dimensions (mm) – Type RST-K, eST-K

6

8


Type RST

In the type RST contact is made by a mechanical reed switch encapsulated in glass.

electrical Connection

Type RST-K

n ormally closed

Type eST

In the type EST contact is made by an electronic switch – without bounce or wear and protected from pole reversal. The output is short circuit proof and insensitive to shocks and vibrations. Connection is by 3-pole connector for easy disconnection. Fitted with connection cable 100 mm long with connector.

A 5 m cable with connector and open end can be ordered separately, or use the Order No. for the complete Type ES with 5 m cable.

electrical Connection

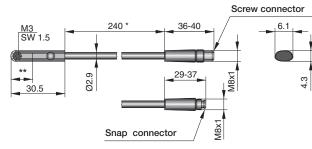

brown (bn)

black (bk)

blue (bu)

Type EST-K

Type EST-S

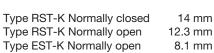


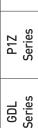
4 (out)

PIN assignment (view of pins) to DIN EN 50044

- * Cable lengths available: 5000 mm \pm 75 mm 2000 mm \pm 40 mm
- ** Switching point: Type RST-K Normally closed 14 mm Type RST-K Normally open 12.3 mm Type EST-K Normally open 8.1 mm

Dimensions (mm) – Type RST-S, eST-S


± 6 mm


<u>M3</u> SW 1.5

30.5

**

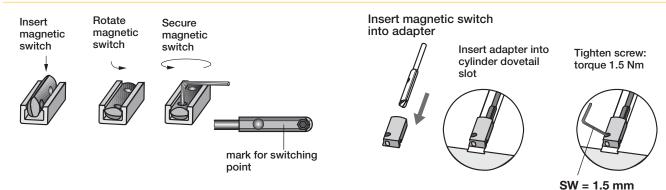
** Switching point:

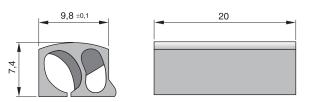
P1X Series

G

Rodless Pneumatic

OSP-P Series


Cylinders


For inventory, lead time, and kit lookup, visit www.pdnplu.com

G91

installation

Dimensions of Adapter for Magnetic Switch

Order instructions

Rodless Pneumatic Cylinders

Series

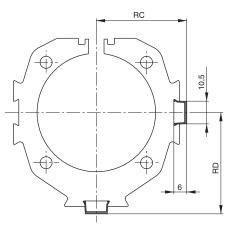
P1X Series

Version	Voltage	Туре	Part number
Magnetic switch, reed contact, normally open, LED indicator, cable 2 m	10-30 V AC / DC	RST-K	P8S-GRFAX
Magnetic switch, reed contact, normally open, LED indicator, cable 5 m	10-30 V AC / DC	RST-K	P8S-GRFDX
Magnetic switch, reed contact, normally open, snap connector M8, LED indicator, cable 0.24 m	10-30 V AC / DC	RST-S	P8S-GRCHX
Magnetic switch, reed contact, normally open, screw connector M8, LED indicator, cable 0.24 m	10-30 V AC / DC	RST-S	P8S-GRCHX
Magnetic switch, reed contact, normally closed, cable 5 m	10-30 V AC / DC	RST-K	P8S-GeFRX
Magnetic switch, electronic, PNP LED indicator, cable 2 m	10-30 V DC	EST-K	P8S-GPFAX
Magnetic switch, electronic, PNP LED indicator, able 5 m	10-30 V DC	EST-K	P8S-GPFDX
Magnetic switch, electronic, PNP snap connector M8, LED indicator	10-30 V DC	EST-S	P8S-GPCHX
Magnetic switch, electronic, PNP screw connector M8, LED indicator	10-30 V DC	EST-S	P8S-GPCHX

Included in delivery:

1 magnetic switch and 1 adapter for dovetail groove mounting

Accessories


<u>د</u> _	Description	Туре	Part number
P1Z Series	Cable M8, 2.5 m without lock nut	KS25	KY3240
S	Cable M8, 5.0 m without lock nut	KS50	KY3241
	Cable M8, 10.0 m without lock nut	KS100	086620T010
GD Seri	Cable M8, 2.5 m with lock nut	KSG25	4041
GDL Series	Cable M8, 5.0 m with lock nut	KSG50	KC3104
	Adapter for dovetail groove (pack of 10)		KL3333

ЯП

Dovetail Cover, Ø16 to 80mm

- For clean guidance of magnetic switch cables along the cylinder body.
- Contains a maximum of 3 cables with diameter 3 mm.
- Material: Plastic
- Color: Red
- Temperature Range: -10 to 80°C

Dimension (mm) and Order instructions

Dimensions (mm)

	Dimensio	ns (mm)	
Series	RC	RD	Part number
OSP-P16	18.5	19	13039FiL
OSP-P25	23.5	25.5	
OSP-P32	29.5	32	Minimal length: 1m
OSP-P40	34.5	37.5	Max. profile length: 2
OSP-P50	41.5	46.5	Multiple profiles can be used.
OSP-P63	51.5	57.5	
OSP-P80	64.5	70.5	

Metric Conversion Fittings

Bore Size	Port Size	Part number
P25	G1/8 to 1/8" NPT	2521-1/8-02
P32, P40, P50	G1/4 to 1/4" NPT	2521-1/4-04
P63	G3/8 to 3/8" NPT	2521-3/8-06
P80	G1/2 to 1/2" NPT	2521-1/2-08

G

GDL Series

C

Service Packs

	Bore sizes							
	10mm	16mm	25mm	32mm	40mm	50mm	63mm	80mm
BUNA service pack single piston	3085x(stroke)	11111x(stroke)	11112x(stroke)	11113x(stroke)	11114x(stroke)	11115x(stroke)	11116x(stroke)	11118x(stroke)
Fluorocarbon service pack, single piston	3086x(stroke)	11121x(stroke)	11122x(stroke)	11123x(stroke)	11124x(stroke)	11125x(stroke)	11126x(stroke)	11128x(stroke)
BUNA service pack single piston - slow speed grease	_	11131x(stroke)	11132x(stroke)	11133x(stroke)	11134x(stroke)	11135x(stroke)	11136x(stroke)	11138x(stroke)
Fluorocarbon service pack, single piston - slow speed grease	_	11141x(stroke)	11142x(stroke)	11143x(stroke)	11144x(stroke)	11145x(stroke)	11146x(stroke)	11148x(stroke)

Note: (stroke) = stroke of cylinder in mm

Service Pack information

Service Packs contain all the components necessary to completely rebuild a Parker rodless cylinder, are available. Each pack contains a complete seal kit, inner and outer bands, Parker grease tube, cleaning tool and repair instructions. It's all packaged in an easy-to-ship, easy-to-store box clearly labeled to indicate the cylinder type, bore and stroke for which it is intended. Contact your local Parker distributor for more information.

Seal & Service Kits

	Bore sizes						
	16mm	25mm	32mm	40mm	50mm	63mm	80mm
BUNA seal kit - standard cylinder	11052	11053	11054	11055	11056	11057	11058
Fluorocarbon seal kit - standard cylinder	11059	11060	11061	11062	11063	11064	11065
Service kit active brake - sideline carriage	_	11095	11096	11097FiL	11098FiL	-	_
Service kit active brake - standard cylinder	_	11822FiL	11823FiL	11824FiL	11825FiL	11826FiL	11827FiL
Service kit - multibrake	_	11089FiL	11090FiL	11091FiL	11092FiL	11093FiL	-

Seal Kit information

Seal Kits include all seals, a tube of grease, bearing shoe, scraper and cleaning tool.

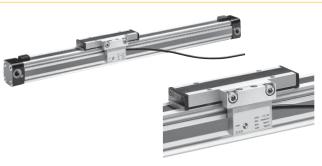
G

Rodless Pneumatic Cylinders

EC

Displacement Measuring System for Automated Movement

Series SFi-plus (incremental measuring system)


- for cylinder series
- OSP-P...

Characteristics

- Contactless magnetic displacement measurement system
- Displacement length up to 5.5 m
- Resolution 0.1 mm (option: 1 mm)
- Displacement speed up to 10 m/s
- For linear and non-linear rotary motion
- Suitable for almost any control or display unit with a counter input

The SFI-plus magnetic displacement measuring system consists of 2 main components.

• Measuring Scale, self-adhesive magnetic measuring scale

• Sensing Head, converts the magnetic poles into electrical signals which are then processed by counter inputs downstream (e.g. PLC, PC, digital counter)

Note: For combinations Active Brake AB + SFI-plus + Magnetic Switch contact our technical department please.

Type 21210FIL / 21211FIL

G

Rodless Pneumatic

OSP-P Series

P1X Series

P1Z Series

GDL Series

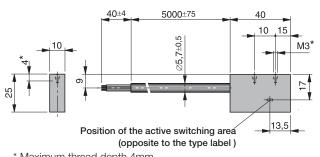
Cylinders

Characteristics

	Type 21210FIL	Type 21211FIL
Output Function		
Resolution	0.1mm	1mm
Pole lengths magnetic scale	5mm	5mm
Maximum speed	10 m/s	10 m/s
Repeat accuracy	± 1 Increment	± 1 Increment
Distance between sensor and scale	≤ 4mm	≤ 4mm
Tangential deviation	≤ 5°	≤ 5°
Lateral deviation	≤ ± 1.5 mm	≤ ± 1.5 mm
Switching output	PNP	PNP
electrical Characteristics		
Operating voltage Ub	18 – 30 V DC	18 – 30 V DC
Voltage drop	$\leq 2 V$	$\leq 2 V$
Continuous current for each output	≤ 20 mA	≤ 20 mA
Power consumption at Ub = 24V, switched on, without load	≤ 50 mA	≤ 50 mA
Short-circuit protection	yes	yes
Reverse polarity protection	_	yes
Protection from inductive load	yes	yes
Power-up pulse suppression	yes	yes

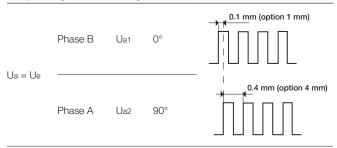
eMC	
Electrostatic discharge immunity	6, B, to EN 61000-4-2 kV
Electromagnetic field immunit	10, A, to EN61000-4-3 V/m
Electrical fast transient/burst immunity (for signal connections)	1, B, to EN 61000-4-4 kV
Electrical fast transient/burst immunity (for DC connections)	2, B, to EN 61000-4-4 kV
Surge immunity (for signal connections)	1, B, to EN 61000-4-5 kV
Surge immunity (for DC connections)	0,5, B, to EN 61000-4-5 kV
Immunity to conducted disturbances	10, A, to EN 61000-4-6 V
Power frequency magnetic field immunity at 50 Hz	30, A, to EN 61000-4-8 A/m
Emission standard for residential	to EN 61000-6-4
Radio disturbance characteristics	to EN 55011, Group 1, A
Mechanical Characteristics	
Housing	Aluminum
Cable length	5.0 m – fixed, open en
Cable cross section	4 x 0.14 mm ²
Cable type	PUR, black
Bending radius	≥ 36 mm
Weigh (mass)	ca. 0.165 kg
environmental Conditions / Shock	Resistance
Degree of protection	IP67 to EN60529
Ambient temperature range	-25°C to 80°C
Broad-band random vibration to EN 60068-2-64	5 g, 5 Hz to 2 kHz, 0.5 h each axis
Vibration stress to EN 60068-2-6	12 g, 10 Hz to 2 kHz, 2 mm, 5 h each axis
Shock to EN 60068-2-27	100 g, 6 ms, 50 bumps each axis
Bump to EN 60068-2-29	5 g, 2 ms, 8000 bumps

Sensoflex


Sensing Head

The sensing head provides two pulsating, 90° out of phase counter signals (phase A/B) with a 0.4 mm resolution (option 4 mm).

External processing can improve the resolution to 0.1 mm (option 1 mm).


The counting direction can be determined automatically from the phase variance of the counter signals.

* Maximum thread depth 4mm

Output signal – Sensing Head

electrical Connection

Color7	Description		
RD = Red	10-30 VDC		
BL = Black	Ground		
YE = Yellow	Phase A		
GN = Green	Phase B		

SFi-plus mounted on a rodless cylinder series OSP-P

The SFI-plus system can be mounted directly on a rodless OSP-P cylinder with the special mounting kit.

The position of the sensing head is generally 90° to the carrier.

Combinations consisting of SFi-plus and OSP-P Cylinders with guides are available on request.

A	Ļ

Dime	nsion	(mm)
		· ·

Series	А	в	С	D	F	G	н	
OSP-P25	32	39	23	50	38	5.5	40	
OSP-P32	37.5	46	30	50	38	6.5	40	
OSP-P40	42.5	50	34	50	38	6.5	40	
OSP-P50	49.5	55	39	50	38	6.5	40	
OSP-P63	59.5	65	49	50	38	10	40	
OSP-P80	72.5	80	64	50	38	12	40	

Л

For inventory, lead times, and kit lookup, visit www.pdnplu.com

G96

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

OSP-P Series

P1X Series

P1Z Series

Order instructions

Description	Part number
Sensing head with measuring scale – Resolution 0.1 mm (scale length = required measuring distance + a minimum of – see table below)	21240x(stroke)
Option: Sensing head with measuring scale – Resolution 1 mm (scale length = required measuring distance + a minimum of – see table below)	21241x(stroke)
Sensing head – Resolution 0.1 mm (spare part)	21210FiL
Option: Sensing head – Resolution 1 mm (spare part)	21211FiL
Measuring scale per meter (spare part)	21235FiL
Mounting kit for OSP-P25	21213FiL
Mounting kit for OSP-P32	21214FiL
Mounting kit for OSP-P40	21215FiL
Mounting kit for OSP-P50	21216FiL
Mounting kit for OSP-P63	21217FiL
Mounting kit for OSP-P80	21218FiL

* Overall length of the measuring scale results from stroke length of the cylinder + dead length Dead length for linear drives series OSP-P see table.

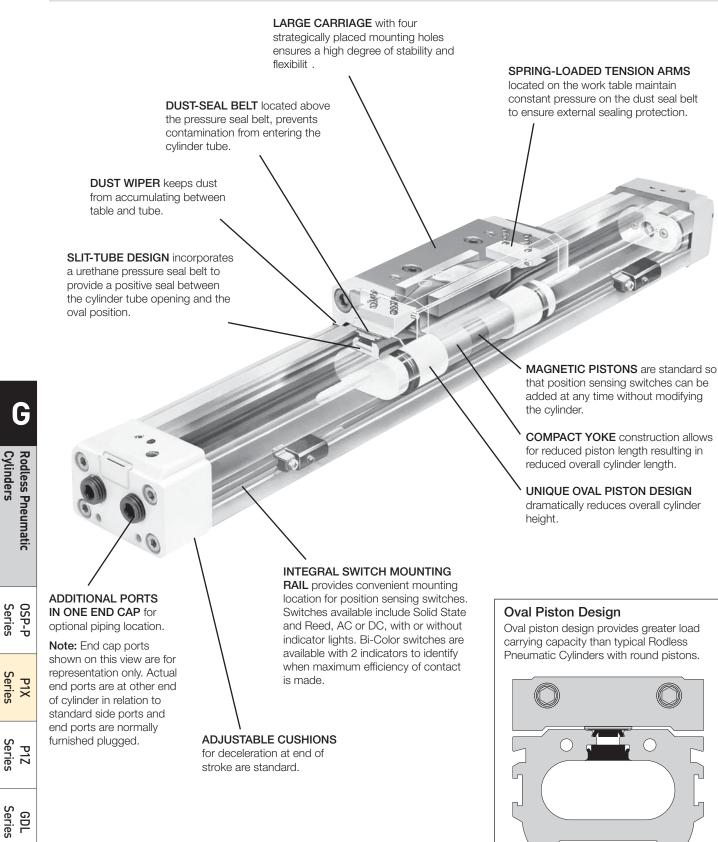
Series	Dead length (mm)
OSP-P 25	154
OSP-P 32	196
OSP-P 40	240
OSP-P 50	280
OSP-P 63	350
OSP-P 80	422

Example:

Cylinder OSP-P, Ø25 mm, stroke length 1000 mm

dead length	+	stroke length	=	overall length of the measuring scale
154 mm	+	1000 mm	=	1154 mm

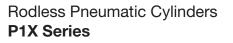
G



Catalog 0900P-6 Features

Rodless Pneumatic Cylinders P1X Series

P1X Series

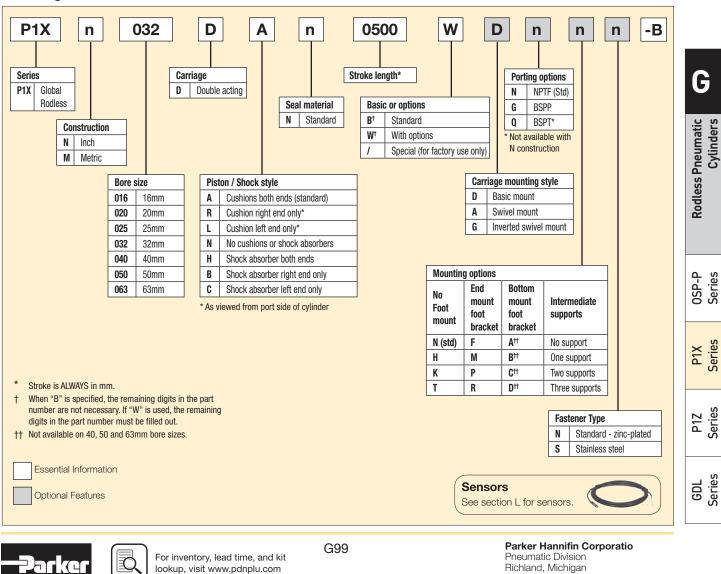

For inventory, lead times, and kit

G98

Catalog 0900P-6

Features

- 7 bore sizes 16mm through 63mm
- Two port locations standard
- Large carriage for stability
- Integral sensor mounting rail
- Optional adjustable stroke and shock absorbers
- Maximum stroke 5000mm



Operating information

Maximum pressure: Minimum pressure:	100 PSIG (7 bar) Ø16, Ø20 bores Ø25, Ø32, Ø40 bores Ø50, Ø63 bores	29 PSI (2 bar) 14.5 PSI (1 bar) 7 PSI (0.5 bar)
Proof pressure:	152 PSI (10.5 bar)	
Temperature range:	40°F to 140°F (5°C to 60)°C)
Filtration requirements:	Filtered, nonlubricated co	ompressed air

Ordering information

Richland, Michigan www.parker.com/pneumatics

Specifications - P1X (standa d with switch)

Operating Medium:	Compressed Air			
Bore Size mm (inch norr	ninal): 16 (5/8)	20 (3/4), 25 (1)	32 (1-1/4), 40 (1-1/2)	50 (2), 63 (2-1/2)
 Port Size – N Series: 	M5 (10-32)	1/8 NPT	1/4 NPT	3/8 NPT
 Port Size – M Series: 	M5 (10-32)	1/8 Rc	1/4 Rc	3/8 Rc
• Stroke Tolerance in .:	±0.080 to 39" ±0.100 to	118" ±0.120 to 1	96"	
Piston Speed, *in./sec.:	(Ø16 & Ø20 bores 2-40 IPS	3 with single end porti	ng with 39" stroke) n single end porting with 78'	' stroke)
Cushion: Air Cush	nion Standard			

• Lubrication: Not Required (if you choose to lubricate your system, continuing lubrication will be required.)

*Note: Actual piston speed with one end ports will vary depending on stroke length.

Weight & Theoretical Force Characteristics

	Weight	S												
	Weight	at Zero	Stroke				M/sight #		Theoretical Force (lbs)					
Area	M00		MLB		MLB1		0 1		at Pre	ssure (PS	5I)			
In ²	lbs	kg	lbs	kg	lbs	kg	lbs	kg	30	40	60	80	100	
0.31	0.70	0.3	0.73	0.3	0.77	0.4	0.07	0.03	9	12	19	25	31	
0.49	1.15	0.5	1.19	0.5	1.28	0.6	0.10	0.04	15	20	29	39	49	
0.84	2.21	1.0	2.43	1.1	2.43	1.1	0.15	0.07	23	30	46	61	76	
1.26	3.31	1.5	3.53	1.6	3.75	1.7	0.20	0.09	38	50	69	100	125	
1.96	5.29	2.4	5.51	2.5	_	_	0.27	0.12	59	78	117	156	195	
3.08	7.94	3.6	8.16	3.7	_	_	0.40	0.18	91	122	182	243	304	
4.86	13.67	6.2	14.33	6.5	_	_	0.63	0.28	145	193	290	386	483	
	0.31 0.49 0.84 1.26 1.96 3.08	Moo Moo In ² Ibs 0.31 0.70 0.49 1.15 0.84 2.21 1.26 3.31 1.96 5.29 3.08 7.94	M00 M00 Ibs kg 0.31 0.70 0.3 0.49 1.15 0.5 0.84 2.21 1.0 1.26 3.31 1.5 1.96 5.29 2.4 3.08 7.94 3.6	Meight at Zero Stroke M00 MLB lbs kg lbs 0.31 0.70 0.3 0.73 0.49 1.15 0.5 1.19 0.84 2.21 1.0 2.43 1.26 3.31 1.5 3.53 1.96 5.29 2.4 5.51 3.08 7.94 3.6 8.16	Weight at Zero Stroke M00 MLB lbs kg lbs kg 0.31 0.70 0.3 0.73 0.3 0.49 1.15 0.5 1.19 0.5 0.84 2.21 1.0 2.43 1.1 1.26 3.31 1.5 3.53 1.6 1.96 5.29 2.4 5.51 2.5 3.08 7.94 3.6 8.16 3.7	Weight at Zero Stroke M00 MLB MLB1 lbs kg lbs kg lbs 0.31 0.70 0.3 0.73 0.3 0.77 0.49 1.15 0.5 1.19 0.5 1.28 0.84 2.21 1.0 2.43 1.1 2.43 1.26 3.31 1.5 3.53 1.6 3.75 1.96 5.29 2.4 5.51 2.5 - 3.08 7.94 3.6 8.16 3.7 -	Weight at Zero Stroke M00 MLB MLB1 lbs kg lbs kg 0.31 0.70 0.3 0.73 0.3 0.77 0.4 0.49 1.15 0.5 1.19 0.5 1.28 0.6 0.84 2.21 1.0 2.43 1.1 2.43 1.1 1.26 3.31 1.5 3.53 1.6 3.75 1.7 1.96 5.29 2.4 5.51 2.5 - - 3.08 7.94 3.6 8.16 3.7 - -	Meight at Zero Stroke MLB MLB1 1" (25.4r) M00 MLB MLB1 1" (25.4r) In2 Ibs kg Ibs kg Ibs kg Ibs 0.31 0.70 0.3 0.73 0.3 0.77 0.4 0.07 0.49 1.15 0.5 1.19 0.5 1.28 0.6 0.10 0.84 2.21 1.0 2.43 1.1 2.43 1.1 0.15 1.26 3.31 1.5 3.53 1.6 3.75 1.7 0.20 1.96 5.29 2.4 5.51 2.5 - - 0.27 3.08 7.94 3.6 8.16 3.7 - - 0.40	Weight at Zero Stroke Weight at Zero Stroke M00 MLB MLB1 "1" (25.4mm) Stroke lbs kg lbs kg lbs kg lbs kg 0.31 0.70 0.3 0.73 0.3 0.77 0.4 0.07 0.03 0.49 1.15 0.5 1.19 0.5 1.28 0.6 0.10 0.04 0.84 2.21 1.0 2.43 1.1 2.43 1.1 0.15 0.07 1.26 3.31 1.5 3.53 1.6 3.75 1.7 0.20 0.09 1.96 5.29 2.4 5.51 2.5 - - 0.27 0.12 3.08 7.94 3.6 8.16 3.7 - - 0.40 0.18	Meight at Zero Stroke MLB MLB1 Weight per 1" (25.4mm) Stroke Theorem at Present 1" (25.4mm) Mreating kg lbs kg lbs kg lbs kg 30 0.31 0.70 0.3 0.73 0.3 0.77 0.4 0.07 0.03 9 0.49 1.15 0.5 1.19 0.5 1.28 0.6 0.10 0.04 15 0.84 2.21 1.0 2.43 1.1 2.43 1.1 0.15 0.07 23 1.26 3.31 1.5 3.53 1.6 3.75 1.7 0.20 0.09 38 1.96 5.29 2.4 5.51 2.5 - - 0.40 0.18 91	Area Mod MLB MLB1 Weight per 1" (25.4mm) Theoretical For at Pressure (PS 1)" (25.4mm) Area M00 MLB MLB1 1" (25.4mm) Stroke at Pressure (PS 1)" (25.4mm) 0.31 0.70 0.3 0.73 0.3 0.77 0.4 0.07 0.03 9 12 0.49 1.15 0.5 1.19 0.5 1.28 0.6 0.10 0.04 15 20 0.84 2.21 1.0 2.43 1.1 2.43 1.1 0.15 0.07 23 30 1.26 3.31 1.5 3.53 1.6 3.75 1.7 0.20 0.09 38 50 1.96 5.29 2.4 5.51 2.5 - - 0.27 0.12 59 78 3.08 7.94 3.6 8.16 3.7 - - 0.40 0.18 91 122	Meight at Zero Stroke Theoretical Force (lbs) Area MO0 MLB MLB1 $1^{\circ}(25.4mm)$ Stroke at Pressure (PSI) Area kg lbs kg lbs kg lbs kg lbs g d0 $1^{\circ}(25.4mm)$ Stroke $1^{\circ}(25.4mm)$	Meight at Zero Stroke Meight per transformed per tran	

Replacement Seal Kits (includes inner & outer bands)

Bore (mm)	Part number
16	L079020016-(stroke)
20	L079020020-(stroke)
25	L080100025-(stroke)
32	L080100032-(stroke)
40	L080100040-(stroke)
50	L080100050-(stroke)
63	L080100063-(stroke)

GDL Series

P1Z Series

G

Rodless Pneumatic Cylinders

OSP-P Series

P1X Series

Moments

Figure 1 shows the maximum allowable moments for each of the three types of loading: pitch, roll and yaw.

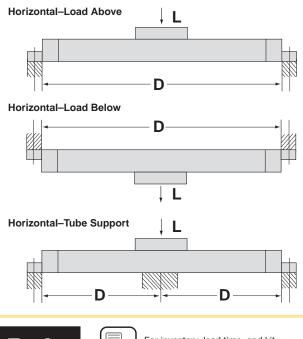
The sum total of each of these types of moments, divided by each of the maximum values, determines a Load-Moment Factor (LMF) should be equal to or less than 1.0. On horizontal mountings, the total load (L) should also be divided by the maximum load allowable (Figure 2) and factored into the equation.

Horizontal mountings:

$$\frac{L}{[L]} + \frac{M}{[M]} + \frac{Ms}{[Ms]} + \frac{Mv}{[Mv]} = LMF \le 1.0$$

Vertical mountings:

$$\frac{M}{[M]} + \frac{Ms}{[Ms]} + \frac{Mv}{[Mv]} = LMF \le 1.0$$


Figure 1

Maximum allowable moments n-m (lb-in)

	[M]		[Ms]		[Mv]	
Bore	Pitch mom	ent	Roll morr	ient	Yaw mon	nent
size	Std.	Inverted	Std.	Inverted	Std.	Inverted
16	5 (44)	3.5 (31)	1 (9)	0.5 (4)	1 (9)	1 (9)
20	10 (89)	7 (62)	1.5 (13)	0.7 (6)	3 (27)	3 (27)
25	17 (150)	12 (106)	5 (44)	2.5 (22)	10 (89)	10 (89)
32	36 (319)	25 (221)	10 (89)	5 (44)	21 (186)	21 (186)
40	77 (682)	54 (478)	23 (204)	11.5 (102)	26 (230)	26 (230)
50	154 (1363)	108 (956)	32 (283)	16 (142)	42 (372)	42 (372)
63	275 (2434)	193 (1708)	52 (460)	26 (230)	76 (673)	76 (673)

Load and Deflectio

Figure 2 shows the maximum load [L] that the cylinder can accept, as well as the maximum length [D] between supports at the maximum load.

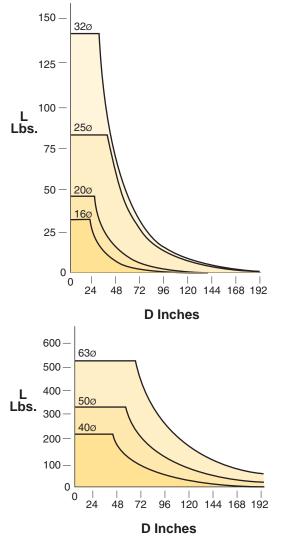


Figure 2

Bore	Max. allowable load [L] N (lbs)		Max. unsupported
size	Std.	Inverted	at max. load
16	141 (32)	70 (16)	450 (17.7)
20	198 (45)	101 (23)	551 (21.7)
25	356 (81)	180 (41)	899 (35.4)
32	616 (140)	308 (70)	749 (29.5)
40	959 (218)	480 (109)	1000 (39.4)
50	1456 (331)	726 (165)	1300 (51.2)
63	2297 (522)	1148 (261)	1600 (63.0)

Acceptable length and load combinations for various bore sizes can be determined from the charts in Figure 3.

Figure 3

To determine cylinder deflections under the load (or esistive force perpendicular to the piston table) without mid-support, see the graphs on page G103.

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics P1Z Series

GDL Series

G

G101

inertia Moment Consideration

When the weight is stopped at the end of the stroke by the cylinder cushion, inertial force is created. This inertial force (Fi) can be determined by using the formula:

- Fi = LG
- L = Load attached to the cylinder carriage (lbs.)
- **G** = Inertia factor (Figure 1)

Example:

A speed of 40 in/sec corresponds to an inertia factor G of 13.

The inertial force calculated would then be multiplied by the distance from the center of gravity of the load to the centerline of the cylinder, and added to the previously calculated M and Mv moments. This will give an M Total and Mv Total. Ensure that the M Total and the Mv Total do not exceed the [M] and [Mv] values shown in Figure 5 (previous page). If they exceed these values, consult the factory.

See pages G112-G114 for additional information on shock absorbers.

external Stops

When the load attached to the cylinder is stopped externally, it creates an additional moment equal to the cylinder force (Fa) times the distance (S). This additional moment, plus the previously calculated Load-Moment factor, should not exceed the allowable values. See previous page.

When reducing the stroke with external stops, remember that the cushion length and the energy absorption capacity are not directly proportional. Reducing the cushioning distance by 50% corresponds to a reduction of 60-70% in cushion effectiveness.

Figure 1

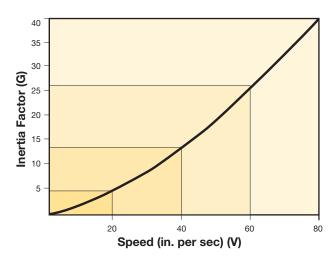
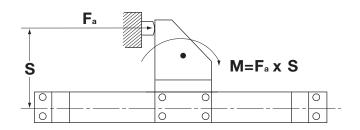
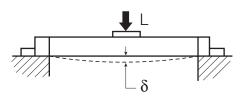



Figure 9

G

Rodless Pneumatic Cylinders


OSP-P Series

P1X Series

G102

Rodless Pneumatic Cylinders **P1X Series**

L=16 lbs.

600

24

Stroke

800

L=32 lbs.

400

200

12

32 mm Bore MM δ δ 1.0 inch L=35 lbs. .032 0.8 L =70 lbs .024 0.6 L=140 lbs. 0.4 .016 0.2 .008 0.0 200 1800 MM 400 600 800 1000 1200 1400 1600 12 24 36 48 60 72 inch Stroke

δ

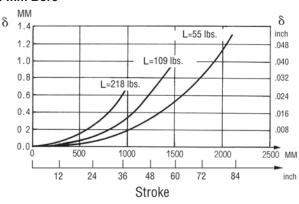
inch

.016

.012

.008

004


1200 MM

48 inch

L =8 lbs.

1000

36

G

Rodless Pneumatic Cylinders

0SP-P Series

P1X Series

P1Z Series

GDL Series

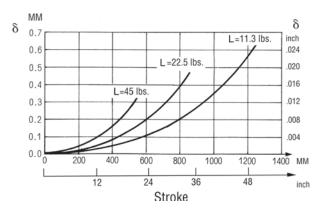
20 mm Bore

16 mm Bore

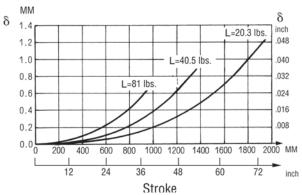
δ

MM

0.5

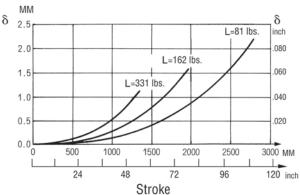

0.4

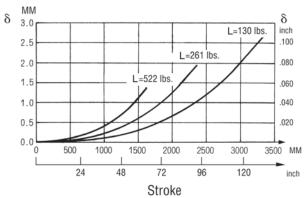
0.3


0.2

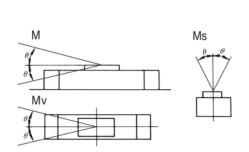
0.1

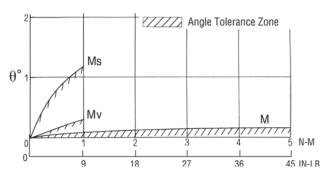
0.0


25 mm Bore



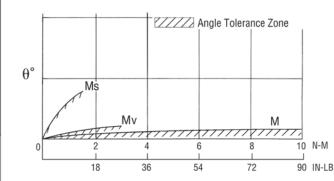
G103


50 mm Bore

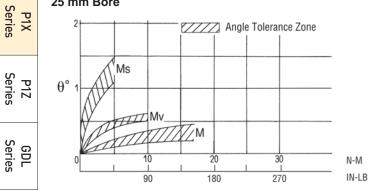

63 mm Bore

Piston Table Angular Deflection Due o Load Moments Applied

16 mm Bore

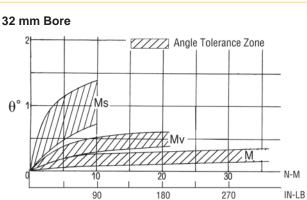


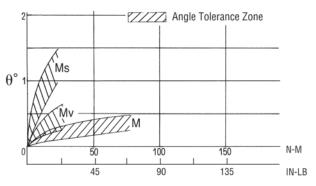
20 mm Bore


G

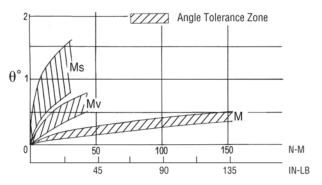
Rodless Pneumatic Cylinders

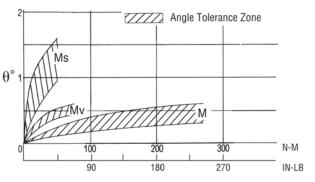
OSP-P Series

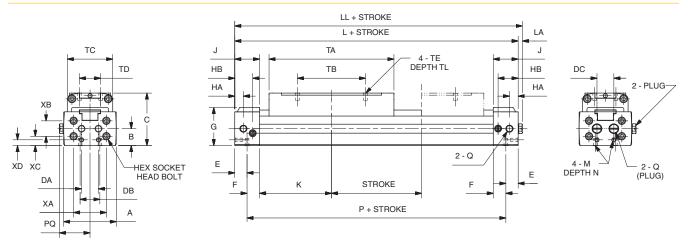

25 mm Bore


-Parker

For inventory, lead times, and kit lookup, visit www.pdnplu.com

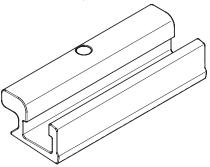



40 mm Bore


50 mm Bore

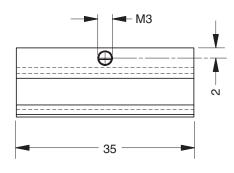
Basic Cylinder

Bore (mm)	А	в	С	DA	DB	DC	Е	F	G	HA	HB	J	к	L	LL	LA	М	N
16	1.46	0.47	1.46	0.47	0.55	0.47	0.34	0.35	1.06	0.24	0.55	0.69	2.24	5.87	5.98	0.12	5-40	0.20
	(37)	(12)	(37)	(12)	(14)	(12)	(8.5)	(9)	(27)	(6)	(14)	(17.5)	(57)	(149)	(152)	(3)	(M3)	(5)
20	1.73	0.55	1.65	0.55	0.63	0.63	0.41	0.45	1.22	0.34	0.73	0.87	2.46	6.65	6.75	0.10	8-32	0.26
	(44)	(14)	(42)	(14)	(16)	(16)	(10.5)	(11.5)	(31)	(8.5)	(18.5)	(22)	(62.5)	(169)	(171.5)	(2.5)	(M4)	(6.5)
Bore																		


(mm)	Р	PQ	Q	TA	тв	тс	TD	TE	TL	ХА	ХВ	хс	XD
16	5.20	0.83	10-32 NPT	3.47	1.89	1.26	0.59	5-40	0.20	0.91	0.43	0.26	0.16
	(132)	(21)	(M5)	(88)	(48)	(32)	(15)	(M3)	(5)	(23)	(11)	(6.5)	(4)
20	5.83	0.97	1/8 NPT	3.94	2.36	1.50	0.71	8-32	0.24	1.10	0.63	0.24	0.20
	(148)	(24.5)	(1/8 Rc)	(100)	(60)	(38)	(18)	(M4)	(6)	(28)	(16)	(6)	(5)

inches (mm)

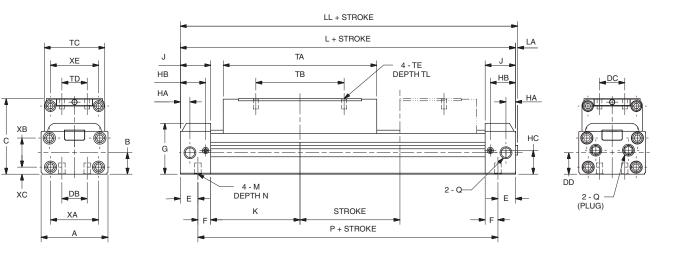
Sensor adapter bracket


Part number P8S-TMA0Y

(Shown larger than actual size)

NOTE: Must be ordered separately when ordering sensors.

C


P1Z Series

For inventory, lead time, and kit lookup, visit www.pdnplu.com

G105

Basic Cylinder

А	в	с	DB	DC	DD	Е	F	G	HA	НВ	нс	J	к	L	LL	LA	М	N
2.09	0.67	2.09	0.79	1.02	0.75	0.55	0.39	1.59	0.30	0.79	0.74	0.95	2.80	7.48	7.56	0.08	1/4-20	0.35
(53)	(17)	(53)	(20)	(26)	(19)	(14)	(10)	(40.5)	(7.5)	(20)	(18.9)	(24)	(71)	(190)	(192)	(2)	(M6)	(9)
2.60	0.73	2.24	1.26	1.06	0.83	0.59	0.51	1.71	0.39	0.93	0.85	1.10	3.35	8.90	9.00	0.10	1/4-20	0.35
(66)	(18.5)	(57)	(32)	(27)	(21)	(15)	(13)	(43.5)	(10)	(23.5)	(21.5)	(28)	(85)	(226)	(228.5)	(2.5)	(M6)	(9)
3.15	0.87	2.64	1.42	1.38	1.10	0.67	0.55	2.03	0.51	1.02	1.06	1.22	3.58	9.61	9.71	0.10	5/16-18	0.47
(80)	(22)	(67)	(36)	(35)	(28)	(17)	(14)	(51.5)	(13)	(26)	(27)	(31)	(91)	(244)	(246.5)	(2.5)	(M8)	(12)
3.78	1.10	3.23	1.77	1.38	1.38	0.91	0.63	2.40	0.59	1.30	1.39	1.54	3.54	10.16	10.26	0.10	5/16-18	0.47
(96)	(28)	(82)	(45)	(35)	(35)	(23)	(16)	(61)	(15)	(33)	(35.3)	(39)	(90)	(258)	(260.5)	(2.5)	(M8)	(12)
4.65	1.38	3.74	1.97	1.54	1.65	0.75	0.79	2.91	0.59	1.26	1.69	1.54	4.29	11.65	11.75	0.10	3/8-16	0.59
(118)	(35)	(95)	(50)	(39)	(42)	(19)	(20)	(74)	(15)	(32)	(43)	(39)	(109)	(296)	(298.5)	(2.5)	(M10)	(15)
	2.09 (53) 2.60 (66) 3.15 (80) 3.78 (96) 4.65	1.1 2.09 0.67 (53) (17) 2.60 0.73 (66) (18.5) 3.15 0.87 (80) (22) 3.78 1.10 (96) (28) 4.65 1.38	2.09 0.67 2.09 (53) (17) (53) 2.60 0.73 2.24 (66) (18.5) (57) 3.15 0.87 2.64 (80) (22) (67) 3.78 1.10 3.23 (96) (28) (82) 4.65 1.38 3.74	2.09 0.67 2.09 0.79 (53) (17) (53) (20) 2.60 0.73 2.24 1.26 (66) (18.5) (57) (32) 3.15 0.87 2.64 1.42 (80) (22) (67) (36) 3.78 1.10 3.23 1.77 (96) (28) (82) (45) 4.65 1.38 3.74 1.97	1.10 2.09 0.67 2.09 0.79 1.02 (53) (17) (53) (20) (26) 2.60 0.73 2.24 1.26 1.06 (66) (18.5) (57) (32) (27) 3.15 0.87 2.64 1.42 1.38 (80) (22) (67) (36) (35) 3.78 1.10 3.23 1.77 1.38 (96) (28) (82) (45) (35) 4.65 1.38 3.74 1.97 1.54	2.09 0.67 2.09 0.79 1.02 0.75 (53) (17) (53) (20) (26) (19) 2.60 0.73 2.24 1.26 1.06 0.83 (66) (18.5) (57) (32) (27) (21) 3.15 0.87 2.64 1.42 1.38 1.10 (80) (22) (67) (36) (35) (28) 3.78 1.10 3.23 1.77 1.38 1.38 (96) (28) (82) (45) (35) (35) 4.65 1.38 3.74 1.97 1.54 1.65	1.10 0.67 2.09 0.79 1.02 0.75 0.55 (53) (17) (53) (20) (26) (19) (14) 2.60 0.73 2.24 1.26 1.06 0.83 0.59 (66) (18.5) (57) (32) (27) (21) (15) 3.15 0.87 2.64 1.42 1.38 1.10 0.67 (80) (22) (67) (36) (35) (28) (17) 3.78 1.10 3.23 1.77 1.38 1.38 0.91 (96) (28) (82) (45) (35) (35) (23) 4.65 1.38 3.74 1.97 1.54 1.65 0.75	2.09 0.67 2.09 0.79 1.02 0.75 0.55 0.39 (53) (17) (53) (20) (26) (19) (14) (10) 2.60 0.73 2.24 1.26 1.06 0.83 0.59 0.51 (66) (18.5) (57) (32) (27) (21) (15) (13) 3.15 0.87 2.64 1.42 1.38 1.10 0.67 0.55 (80) (22) (67) (36) (35) (28) (17) (14) 3.78 1.10 3.23 1.77 1.38 1.38 0.91 0.63 (96) (28) (82) (45) (35) (35) (23) (16) 4.65 1.38 3.74 1.97 1.54 1.65 0.75 0.79	2.09 0.67 2.09 0.79 1.02 0.75 0.55 0.39 1.59 (53) (17) (53) (20) (26) (19) (14) (10) (40.5) 2.60 0.73 2.24 1.26 1.06 0.83 0.59 0.51 1.71 (66) (18.5) (57) (32) (27) (21) (15) (13) (43.5) 3.15 0.87 2.64 1.42 1.38 1.10 0.67 0.55 2.03 (80) (22) (67) (36) (35) (28) (17) (14) (51.5) 3.78 1.10 3.23 1.77 1.38 1.38 0.91 0.63 2.40 (96) (28) (82) (45) (35) (35) (23) (16) (61) 4.65 1.38 3.74 1.97 1.54 1.65 0.75 0.79 2.91	2.09 0.67 2.09 0.79 1.02 0.75 0.55 0.39 1.59 0.30 2.60 0.73 2.24 1.26 1.06 0.83 0.59 0.51 1.71 0.39 2.60 0.73 2.24 1.26 1.06 0.83 0.59 0.51 1.71 0.39 2.60 0.73 2.24 1.26 1.06 0.83 0.59 0.51 1.71 0.39 (66) (18.5) (57) (32) (27) (21) (15) (13) (43.5) (10) 3.15 0.87 2.64 1.42 1.38 1.10 0.67 0.55 2.03 0.51 (80) (22) (67) (36) (35) (28) (17) (14) (51.5) (13) 3.78 1.10 3.23 1.77 1.38 1.38 0.91 0.63 2.40 0.59 (96) (28) (82) (45) (35)	2.09 0.67 2.09 0.79 1.02 0.75 0.55 0.39 1.59 0.30 0.79 (53) (17) (53) (20) (26) (19) (14) (10) (40.5) (7.5) (20) 2.60 0.73 2.24 1.26 1.06 0.83 0.59 0.51 1.71 0.39 0.93 (66) (18.5) (57) (32) (27) (21) (15) (13) (43.5) (10) (23.5) 3.15 0.87 2.64 1.42 1.38 1.10 0.67 0.55 2.03 0.51 1.02 (80) (22) (67) (36) (35) (28) (17) (14) (51.5) (13) (26) 3.78 1.10 3.23 1.77 1.38 1.38 0.91 0.63 2.40 0.59 1.30 (96) (28) (82) (45) (35) (35) (23) (16) (61)	2.09 0.67 2.09 0.79 1.02 0.75 0.55 0.39 1.59 0.30 0.79 0.74 (53) (17) (53) (20) (26) (19) (14) (10) (40.5) (7.5) (20) (18.9) 2.60 0.73 2.24 1.26 1.06 0.83 0.59 0.51 1.71 0.39 0.93 0.85 (66) (18.5) (57) (32) (27) (21) (15) (13) (43.5) (10) (23.5) (21.5) 3.15 0.87 2.64 1.42 1.38 1.10 0.67 0.55 2.03 0.51 1.02 1.06 (80) (22) (67) (36) (35) (28) (17) (14) (51.5) (13) (26) (27) 3.78 1.10 3.23 1.77 1.38 1.38 0.91 0.63 2.40 0.59 1.30 1.39 (96) (28)<	2.09 0.67 2.09 0.79 1.02 0.75 0.55 0.39 1.59 0.30 0.79 0.74 0.95 (53) (17) (53) (20) (26) (19) (14) (10) (40.5) (7.5) (20) (18.9) (24) 2.60 0.73 2.24 1.26 1.06 0.83 0.59 0.51 1.71 0.39 0.93 0.85 1.10 (66) (18.5) (57) (32) (27) (21) (15) (13) (43.5) (10) (23.5) (21.5) (28) 3.15 0.87 2.64 1.42 1.38 1.10 0.67 0.55 2.03 0.51 1.02 1.06 1.22 (80) (22) (67) (36) (35) (28) (17) (14) (51.5) (13) (26) (27) (31) 3.78 1.10 3.23 1.77 1.38 1.38 0.91 0.63 2.	2.09 0.67 2.09 0.79 1.02 0.75 0.55 0.39 1.59 0.30 0.79 0.74 0.95 2.80 (53) (17) (53) (20) (26) (19) (14) (10) (40.5) (7.5) (20) (18.9) (24) (71) 2.60 0.73 2.24 1.26 1.06 0.83 0.59 0.51 1.71 0.39 0.93 0.85 1.10 3.35 (66) (18.5) (57) (32) (27) (21) (15) (13) (43.5) (10) (26) (21.5) (28) (85) 3.15 0.87 2.64 1.42 1.38 1.10 0.67 0.55 2.03 0.51 1.02 1.06 1.22 3.58 (80) (22) (67) (36) (35) (28) (17) (14) (51.5) (13) (26) (27) (31) (91) 3.78 1.10 3.23	2.09 0.67 2.09 0.79 1.02 0.75 0.55 0.39 1.59 0.30 0.79 0.74 0.95 2.80 7.48 (53) (17) (53) (20) (26) (19) (14) (10) (40.5) (7.5) (20) (18.9) (24) (71) (190) 2.60 0.73 2.24 1.26 1.06 0.83 0.59 0.51 1.71 0.39 0.93 0.85 1.10 3.35 8.90 (66) (18.5) (57) (32) (27) (21) (15) (13) (43.5) (10) (23.5) (21.5) (28) (85) (226) 3.15 0.87 2.64 1.42 1.38 1.10 0.67 0.55 2.03 0.51 1.02 1.06 1.22 3.58 9.61 (80) (22) (67) (36) (35) (28) (17) (14) (51.5) (13) (26) (27) (31) (91) (244) 3.78 1.10 3.23 1.77 1.3	2.09 0.67 2.09 0.79 1.02 0.75 0.55 0.39 1.59 0.30 0.79 0.74 0.95 2.80 7.48 7.56 (53) (17) (53) (20) (26) (19) (14) (10) (40.5) (7.5) (20) (18.9) (24) (71) (190) (192) 2.60 0.73 2.24 1.26 1.06 0.83 0.59 0.51 1.71 0.39 0.93 0.85 1.10 3.35 8.90 9.00 (66) (18.5) (57) (32) (27) (21) (15) (13) (43.5) (10) 0.26 1.26 1.88 9.01 (22.8) (23.5) (21.5) (28) (85) (22.6) (22.8) (22.8) (27) (31) (91) (24.4) (24.65) 3.15 0.87 2.64 1.42 1.38 1.10 0.67 0.55 2.03 0.51 1.02 1.06 1.22 3.58 9.61 9.71 (80) (22) (67) (36)	2.09 0.67 2.09 0.79 1.02 0.75 0.55 0.39 1.59 0.30 0.79 0.74 0.95 2.80 7.48 7.56 0.08 (53) (17) (53) (20) (26) (19) (14) (10) (40.5) (7.5) (20) (18.9) (24) (71) (190) (192) (2) 2.60 0.73 2.24 1.26 1.06 0.83 0.59 0.51 1.71 0.39 0.93 0.85 1.10 3.35 8.90 9.00 (22.5) (25.5) 3.15 0.87 2.64 1.42 1.38 1.10 0.67 0.55 2.03 0.51 1.02 1.06 1.22 3.58 9.61 9.71 (2.6) (2.7) (31) (91) (244) (246.5) (2.5) (2.5) 3.78 1.10 3.23 1.77 1.38 1.38 0.91 0.63 2.40 0.59 1.30 1.39 1.54 3.54 10.16 10.26 (2.5) 3.78 1.10 <td< td=""><td>2.09 0.67 2.09 0.79 1.02 0.75 0.55 0.39 1.59 0.30 0.79 0.74 0.95 2.80 7.48 7.56 0.08 1/4-20 (53) (17) (53) (20) (26) (19) (14) (10) (40.5) (7.5) (20) (18.9) (24) (71) (190) (192) (2) (M6) 2.60 0.73 2.24 1.26 1.06 0.83 0.59 0.51 1.71 0.39 0.93 0.85 1.10 3.35 8.90 9.00 (21) 1/4-20 (66) (18.5) (57) (32) (27) (21) (15) (13) (43.5) (10) (23.5) (21.5) (28) (85) 8.90 9.00 0.10 1/4-20 (66) (18.5) (57) (36) (35) (21) (15) (13) (43.5) (10) (23.5) (21) (28) (85) (28) 8.61 9.71 0.10 5/16-18 (80) (22) (67) (36)</td></td<>	2.09 0.67 2.09 0.79 1.02 0.75 0.55 0.39 1.59 0.30 0.79 0.74 0.95 2.80 7.48 7.56 0.08 1/4-20 (53) (17) (53) (20) (26) (19) (14) (10) (40.5) (7.5) (20) (18.9) (24) (71) (190) (192) (2) (M6) 2.60 0.73 2.24 1.26 1.06 0.83 0.59 0.51 1.71 0.39 0.93 0.85 1.10 3.35 8.90 9.00 (21) 1/4-20 (66) (18.5) (57) (32) (27) (21) (15) (13) (43.5) (10) (23.5) (21.5) (28) (85) 8.90 9.00 0.10 1/4-20 (66) (18.5) (57) (36) (35) (21) (15) (13) (43.5) (10) (23.5) (21) (28) (85) (28) 8.61 9.71 0.10 5/16-18 (80) (22) (67) (36)

Bore (mm)	Р	Q	ТА	тв	тс	TD	TE	TL	XA	ХВ	XC	XE
25	6.38	1/8 NPT	4.80	2.76	1.89	0.79	10-24	0.32	1.50	0.91	0.22	1.58
	(162)	(1/8 Rc)	(122)	(70)	(48)	(20)	(M5)	(8)	(38)	(23)	(5.5)	(40)
32	7.72	1/4 NPT	5.28	3.15	2.21	0.79	1/4-20	0.35	1.89	0.98	0.24	1.85
	(196)	(1/4 Rc)	(134)	(80)	(56)	(20)	(M6)	(9)	(48)	(25)	(6)	(47)
40	8.27	1/4 NPT	5.83	3.54	2.68	1.18	1/4-20	0.43	2.36	1.18	0.28	2.28
	(210)	(1/4 Rc)	(148)	(90)	(68)	(30)	(M6)	(11)	(60)	(30)	(7)	(58)
50	8.35	3/8 NPT	5.98	3.94	3.15	1.18	5/16-18	0.51	2.91	1.42	0.39	2.76
	(212)	(3/8 Rc)	(152)	(100)	(80)	(30)	(M8)	(13)	(74)	(36)	(10)	(70)
63	10.16	3/8 NPT	6.61	4.33	4.02	1.58	5/16-18	0.51	3.78	1.65	0.55	3.54
	(258)	(3/8 Rc)	(168)	(110)	(102)	(40)	(M8)	(13)	(96)	(42)	(14)	(90)

inches (mm)

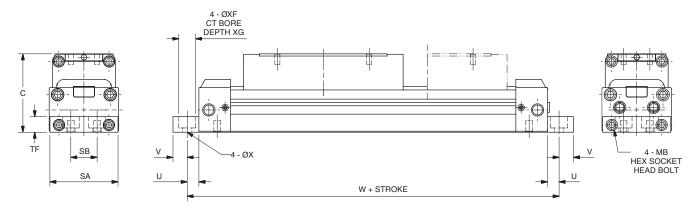
G

Rodless Pneumatic Cylinders

OSP-P Series

P1X Series

GDL Series



end Mount Foot Bracket

16 to 32 mm bore sizes

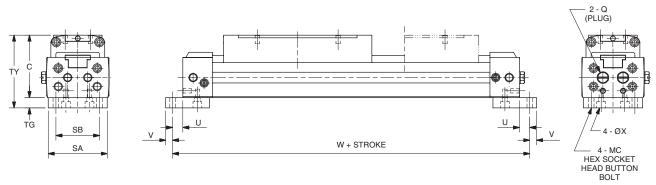
40 to 63 mm bore sizes

Bore (mm)	с	SA	SB	TF	U	v	W	х	XF	XG	MB
16	1.46 (37)	1.38 (35)	1.02 (26)	0.32 (8)	0.24 (6)	0.16 (4)	6.34 (161)	0.14 (3.6)	_	_	M3x10
20	1.65 (42)	1.69 (43)	1.30 (33)	0.39 (10)	0.24 (6)	0.24 (6)	7.13 (181)	0.19 (4.7)	_	_	M4x12
25	2.09 (53)	2.05 (52)	0.79 (20)	0.47 (12)	0.35 (9)	0.43 (11)	8.19 (208)	0.28 (7)	_	_	M5x50
32	2.24 (57)	2.52 (64)	1.26 (32)	0.47 (12)	0.35 (9)	0.43 (11)	9.61 (244)	0.28 (7)	_	_	M5x50
40	2.64 (67)	3.15 (80)	1.18 (30)	0.59 (15)	0.49 (12.5)	0.45 (11.5)	10.60 (269)	0.35 (9)	0.51 (13)	0.34 (8.7)	M6x55
50	3.23 (82)	3.70 (94)	1.57 (40)	0.79 (20)	0.49 (12.5)	0.45 (11.5)	11.10 (283)	0.35 (9)	0.51 (13)	0.34 (8.7_	M8x65
63	3.74 (95)	4.57 (116)	1.89 (48)	0.98 (25)	0.59 (15)	0.59 (15)	12.80 (326)	0.43 (11)	0.61 (15.5)	0.41 (10.5)	M8x70

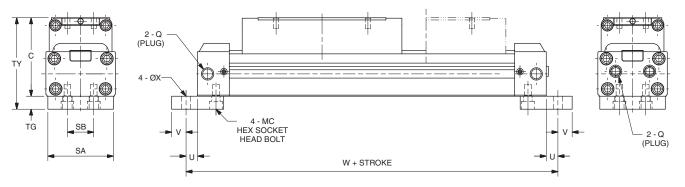
inches (mm)

G107

0SP-P Series


P1X Series

P1Z Series


GDL Series

Bottom Mount Foot Bracket

16 to 20 mm bore sizes

25 to 32 mm bore sizes

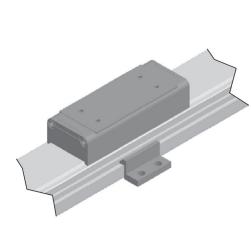
Rodless Pneumatic Cylinders

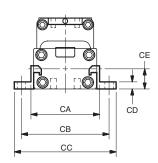
G

P1Z Series

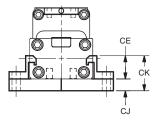
16 1.46 (37) 10-32 (M5) 1.38 (35) 1.02 (26) 0.24 (6) 1.69 (43) 0.24 (6) 0.11 (4) 20 1.65 1/8 NPT 1.69 1.30 0.32 1.97 0.24 0.24	(161) (3.4) 5-40, 1/4 .24 7.13 0.18 8-32, 3/8 .5) (181) (4.5) 8-32, 3/8	
20	b) (181) (4.5) ^{8-32, 3/8}	LG
(42) (1/8 Rc) (43) (33) (8) (50) (6) (6)	42 0.10 0.20	
25 2.09 1/8 NPT 1.97 0.79 0.39 2.48 0.35 0.4 (53) (1/8 Rc) (50) (20) (10) (63) (9) (11)	1/4-2018	1/2 LG
32 2.24 1/4 NPT 2.52 1.26 0.39 2.64 0.35 0.4 (57) (1/4 Rc) (64) (32) (10) (67) (9) (11)	$1/4-2() \times 1$	1/2 LG
40 2.64 1/4 NPT		
50 3.23 3/8 NPT		
63 3.74 3/8 NPT (95) (3/8 Rc)		

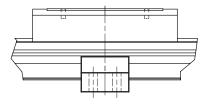
inches (mm)


GDL Series



G108


intermediate support brackets (2 per kit)


end mount

G

Rodless Pneumatic Cylinders

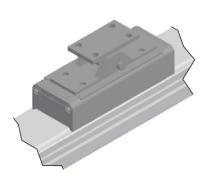
0SP-P Series

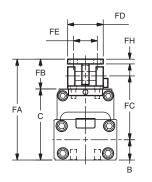
P1X Series

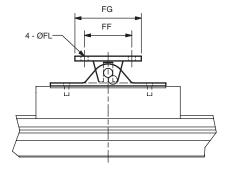
P1Z Series

GDL Series

Bore (mm)	CA	СВ	СС	CD	CE	CF	CG	СН	
16	1.654 (42)	2.205 (56)	2.52 (64)	0.118 (3)	0.472 (12)	0.787 (20)	1.378 (35)	0.157 (4)	
20	1.929 (49)	2.52 (64)	2.953 (75)	0.157 (4)	0.551 (14)	0.787 (20)	1.496 (38)	0.197 (5)	
25	2.362 (60)	2.992 (76)	3.465 (88)	0.236 (6)	0.768 (19.5)	0.787 (20)	1.575 (40)	0.276 (7)	
32	2.913 (74)	3.465 (88)	3.937 (100)	0.236 (6)	0.846 (21.5)	0.787 (20)	1.575 (40)	0.276 (7)	
40	3.543 (90)	4.252 (108)	4.882 (124)	0.236 (6)	0.965 (24.5)	1.181 (30)	2.362 (60)	0.354 (9)	
50	4.173 (106)	4.882 (124)	5.512 (140)	0.315 (8)	1.201 (30.5)	1.181 (30)	2.362 (60)	0.354 (9)	
63	5.118 (130)	5.984 (152)	6.772 (172)	0.394 (10)	1.516 (38.5)	1.969 (50)	3.543 (90)	0.433 (11)	


Bore			Kit part number	
(mm)	CJ	СК	End mount or no mount	Bottom mount
16	0.236 (6)	0.709 (18)	L080180016	L080190016
20	0.315 (8)	0.866 (22)	L080180020	L080190020
25	0.394 (10)	1.161 (29.5)	L080180025	L080190025
32	0.394 (10)	1.24 (31.5)	L080180032	L080190032
40	_	_	L080180040	
50	_	_	L080180050	
63	_	_	L080180063	


inches (mm)



Swivel mount

Absorbs misalignment between cylinder and load

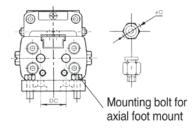
FJ dimension is the maximum horizontal floa

FK dimension is the maximum vertical floa

	Bore (mm)	FA	FB	FC	FD	FE	FF	FG	FH
	16	2.238 (58)	0.827 (21)	1.339 (34)	0.945 (24)	0.673 (16)	1.181 (30)	1.575 (40)	0.118 (3)
	20	2.638 (67)	0.984 (25)	1.535 (39)	1.181 (30)	0.787 (20)	1.575 (40)	2.205 (56)	0.157 (4)
	25	3.071 (78)	0.984 (25)	1.85 (47)	1.181 (30)	0.787 (20)	1.575 (40)	2.205 (56)	0.157 (4)
G	32	3.74 (95)	1.496 (38)	2.185 (55.5)	1.772 (45)	1.181 (30)	1.969 (50)	2.756 (70)	0.236 (6)
Ro	40	4.134 (105)	1.496 (38)	2.441 (62)	1.772 (45)	1.181 (30)	1.969 (50)	2.756 (70)	0.236 (6)
Rodless P Cylinders	50	4.961 (126)	1.732 (44)	2.874 (73)	2.362 (60)	1.575 (40)	2.756 (70)	3.543 (90)	0.315 (8)
Rodless Pneumatic Cylinders	63	5.472 (139)	1.732 (44)	3.11 (79)	2.362 (60)	1.575 (40)	2.756 (70)	3.543 (90)	0.315 (8)
ā									
tic	Bore (mm)		FJ	FK	FL	В	С	Part number	
tic	(mm)	inches	FJ 0.118	FK 0.118	FL 0.134	B 0.472	C 1.457	Part number	
tic		inches mm	_						
	(mm) 16		0.118	0.118	0.134	0.472	1.457	L078930016	
	(mm)	mm	0.118 3	0.118 3	0.134 3.4	0.472 12	1.457 37	L078930016 L078930016	
tic OSP-P Series	(mm) 16 20	mm inches	0.118 3 0.118	0.118 3 0.118	0.134 3.4 0.177	0.472 12 0.551	1.457 37 1.654	L078930016 L078930016 L080160020)
	(mm) 16	mm inches mm	0.118 3 0.118 3	0.118 3 0.118 3	0.134 3.4 0.177 4.5	0.472 12 0.551 14	1.457 37 1.654 42	L078930016 L078930016 L080160020 L08016M02)
OSP-P Series	(mm) 16 20 25	mm inches mm inches	0.118 3 0.118 3 0.118	0.118 3 0.118 3 0.118	0.134 3.4 0.177 4.5 0.236	0.472 12 0.551 14 0.669	1.457 37 1.654 42 2.087	L078930016 L078930016 L080160020 L08016M02 L080160025	5
OSP-P Series	(mm) 16 20	mm inches mm inches mm	0.118 3 0.118 3 0.118 3 3	0.118 3 0.118 3 0.118 3 3	0.134 3.4 0.177 4.5 0.236 6	0.472 12 0.551 14 0.669 17	1.457 37 1.654 42 2.087 53	L078930016 L078930016 L080160020 L08016M025 L08016M025 L08016M02	5
	(mm) 16 20 25 32	mm inches mm inches mm inches	0.118 3 0.118 3 0.118 3 0.118 3 0.197	0.118 3 0.118 3 0.118 3 0.118 3 0.197	0.134 3.4 0.177 4.5 0.236 6 0.276	0.472 12 0.551 14 0.669 17 0.728	1.457 37 1.654 42 2.087 53 2.244	L078930016 L078930016 L080160020 L08016M02 L080160025 L08016M02 L080160032	5
OSP-P Series	(mm) 16 20 25	mm inches mm inches mm inches mm	0.118 3 0.118 3 0.118 3 0.118 3 0.197 5	0.118 3 0.118 3 0.118 3 0.197 5	0.134 3.4 0.177 4.5 0.236 6 0.276 7	0.472 12 0.551 14 0.669 17 0.728 18.5	1.457 37 1.654 42 2.087 53 2.244 57	L078930016 L078930016 L080160020 L08016M02 L08016M02 L08016M02 L08016M03 L08016M03	5
OSP-P P1X Series Series	(mm) 16 20 25 32 40	mm inches mm inches mm inches mm inches	0.118 3 0.118 3 0.118 3 0.118 3 0.197 5 0.197	0.118 3 0.118 3 0.118 3 0.118 3 0.197 5 0.197	0.134 3.4 0.177 4.5 0.236 6 0.276 7 0.276	0.472 12 0.551 14 0.669 17 0.728 18.5 0.866	1.457 37 1.654 42 2.087 53 2.244 57 2.638	L078930016 L078930016 L080160020 L080160025 L080160025 L080160022 L080160032 L080160032 L080160040	0 5 2 0
OSP-P P1X Series Series	(mm) 16 20 25 32	mm inches mm inches mm inches mm inches mm	0.118 3 0.118 3 0.118 3 0.118 3 0.197 5 0.197 5	0.118 3 0.118 3 0.118 3 0.118 3 0.197 5 0.197 5	0.134 3.4 0.177 4.5 0.236 6 0.276 7 0.276 7	0.472 12 0.551 14 0.669 17 0.728 18.5 0.866 22	1.457 37 1.654 42 2.087 53 2.244 57 2.638 67	L078930016 L078930016 L080160020 L080160025 L080160025 L080160032 L080160032 L080160032 L080160040 L080160040	D 5 2 0
OSP-P P1X Series Series	(mm) 16 20 25 32 40 50	mm inches mm inches mm inches mm inches mm inches	0.118 3 0.118 3 0.118 3 0.118 3 0.197 5 0.197 5 0.197	0.118 3 0.118 3 0.118 3 0.118 3 0.197 5 0.197 5 0.197	0.134 3.4 0.177 4.5 0.236 6 0.276 7 0.276 7 0.276 7 0.354	0.472 12 0.551 14 0.669 17 0.728 18.5 0.866 22 1.102	1.457 37 1.654 42 2.087 53 2.244 57 2.638 67 3.228	L078930016 L078930016 L080160020 L080160025 L080160025 L080160032 L080160032 L080160033 L080160040 L080160040	D 5 2 0 0
OSP-P P1X Series Series S	(mm) 16 20 25 32 40	mm inches mm inches mm inches mm inches mm inches mm inches mm	0.118 3 0.118 3 0.118 3 0.118 3 0.197 5 0.197 5 0.197 5 0.197 5 0.197 5	0.118 3 0.118 3 0.118 3 0.118 3 0.197 5 0.197 5 0.197 5 0.197 5 0.197 5	0.134 3.4 0.177 4.5 0.236 6 0.276 7 0.276 7 0.276 7 0.354 9	0.472 12 0.551 14 0.669 17 0.728 18.5 0.866 22 1.102 28	1.457 37 1.654 42 2.087 53 2.244 57 2.638 67 3.228 82	L078930016 L078930016 L080160020 L080160025 L080160025 L080160032 L080160032 L080160032 L080160040 L080160040 L080160050 L08016M05	D 5 2 0 0

inches (mm)

GDL Series


G110

end Port Piping

Refer to chart below to determine when end port piping can be used with various types of mountings relative to fitting clearance.

On all bore sizes with foot mounting, the end port pipe fittings will obstruct the mounting holes. To avoid this problem, mount the cylinder first and tighten the mounting bolts and then attach the pipe fittings to the cylinder ports

Bore	øC [O.D. of fit	øC [O.D. of fittings - mm (in.)]					
(mm)	No mount	No mount End mount					
16	12 (0.472)		12 (0.472)				
20	16 (0.630)	End Port Piping	16 (0.630)				
25	26 (1.024)	Not Available	26 (1.024)				
32	27 (1.065)		27 (1.063)				
40	35 (1.378)	26 (1.024)					
50	35 (1.378)	30 (1.181)	_				
63	39 (1.535)	34 (1.339)	_				
-							

Ó

Shock Absorbers Selection Criteria

The Shock Absorber Advantage

- Increase equipment throughput
- Smoother deceleration of loads
- Adjustable end of stroke positioning
- Prevents impact damage
- Minimize shock loads on equipment
- Improves product performance

Four Steps to Great Performance

Step 1. Gather the Application Parameters

- Total load weight (pounds)
- Final velocity at impact (inches/second)*
- Cycle rate (cycles per hour)

Step 2. Verify Shock Absorber Performance

- See charts on the following pages
- Determine that shock absorber will do the job

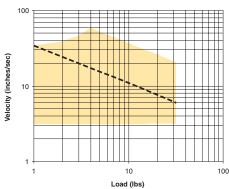
*If final velocity cannot be easily calculated, double the average velocity.

Step 3. Verify the Cycle Rate

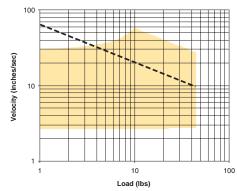
 See shock specifications below and verify application is within cycle rate

Step 4. Choose the Appropriate Option in Model Code

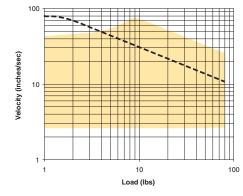
Shock absorber specifications

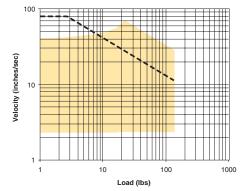

Cylinder	16mm	20mm	25mm	32mm	40mm	50, 63mm
Shock absorber number	109556	109559	109560	109561	109562	MC600MH
Max. energy absorption - in-lbs (kgf·m)	26.0 (0.3)	60.8 (0.7)	104.2 (1.2)	226 (2.6)	608 (7.0)	1042 (12)
Stroke - inches	0.236	0.315	0.394	0.590	0.787	0.984
Energy absorption / hour - inlbs / hour	54,700	109,380	187,510	338,560	729,200	750,000
Max. impact velocity - in. / sec.	59	59	78.7	78.7	98.4	118.1
Max. cycle rate per hour	2100	1800	1800	1500	1200	720
Ambient temperature - °F (°C)	41-140 (5-60)					
Spring return force - Ib. Extended Compressed	0.65 1.01	0.45 0.97	0.65 1.33	1.33 2.65	2.20 4.86	3.60 7.49
Return time - Sec.	0.3	0.3	0.3	0.3	0.4	0.4

G

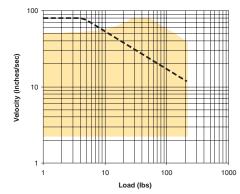


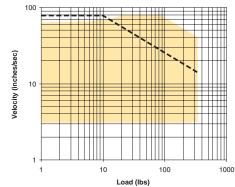
Performance data (16 to 32mm bores)



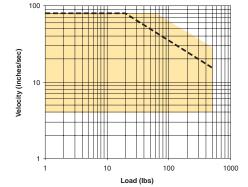

20 mm Bore

25 mm Bore

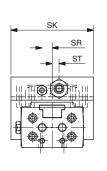

32 mm Bore

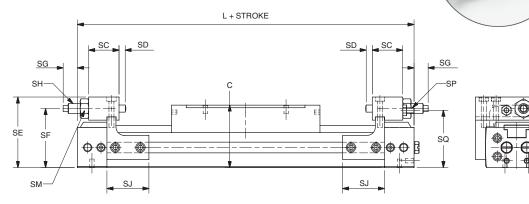


- Air Cushion w/back pressure (flow controls or other meter out device)
 Shock Absorber
- **Notes:** 1. If the cylinder is vertical in orientation, double the total load for bottom shock absorber.
 - 2. Use the total load that is being moved by shock absorber. If a weight transfer application, this would include La.
 - 3. If final velocity cannot be easily determined, use two times the stroke divided by the stroke time.


40 mm Bore

50 mm Bore


63 mm Bore



C	
Rodless Pneumatic	Cylinders
d-dS0	Series
P1X	Series
P1Z	Series
GDL	Series

Stroke Adjustments and Shock Absorber Dimensions

16 to 25mm bore sizes

Bore					SG		SH								
(mm)	SC	SD	SE	SF	Max	Min	in-lbs	SJ	SK	SP	SQ	SR	ST	С	L
16	0.71 (18)	0.16 (4)	1.65 (42)	1.38 (35)	0.57 (14.5)	0.18 (4.5)	26	0.98 (25)	1.93 (49)	M3	1.34 (34)	0.24 (6)	0.16 (4)	1.46 (37)	5.87 (149)
20	0.89 (22.5)	0.14 (3.5)	1.89 (48)	1.57 (40)	0.57 (14.5)	0.18 (4.5)	61	1.54 (39)	2.24 (57)	M4	1.50 (38)	0.32 (8)	0.20 (5)	1.65 (42)	6.65 (169)
25	0.79 (20)	0.10 (2.5)	2.46 (62.5)	2.03 (51.5)	0.57 (14.5)	0.18 (4.5)	104	1.97 (50)	3.03 (77)	M6	1.97 (50)	0.47 (12)	0.39 (10)	2.09 (53)	7.48 (190)

L + STROKE

С

SH

226

608

1042

1042

in-lbs

SJ

2.56

(65)

2.56

(65)

2.76

(70)

2.76

(70)

Ψ

SK

3.86

(98)

4.41

(112)

5.35

(136)

6.22

(158)

G

Rodless Pneumatic Cylinders

01	0
(0	

Ð	-0
	<u> </u>
Ξ.	\sim
ß	-
0,	

GDL Series

inches (mm)

SH = max. energy absorption

G114

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

SG

SQ

ST

0.47

(12)

0.47

(12)

0.67

(17)

0.79

(20)

SC

SD

SJ

SQ

2.11

(53.5)

2.50

(63.5)

3.05

(77.5)

3.50

(89)

SR

0.55

(14)

0.67

(17)

0.87

(22)

0.98

(25)

SP

M8

M10

M12

M16

L

8.90

(226)

9.61

(244)

10.16

(258)

11.65

(296)

С

2.24

(57)

2.64

(67)

3.23

(82)

3.74

(95)

inches (mm) SH = max. energy absorption

۲

SC

0.87

(22)

1.26

(32)

1.50

(38)

1.50

(38)

32 to 63mm bore sizes

ST

SD

0.28

0.28

0.32

0.32

(7)

(7)

(8)

(8)

SG

SM

 \bigcirc

SF

2.19

(55.5)

2.58

(65.5)

3.15

(80)

3.68

(93.5)

SF

SE

SE

2.62

(66.5)

3.09

(78.5)

3.90

(99)

4.41

(112)

SC

SD

SJ

Min

0.67

(17)

0.94

(24)

1.77

(45)

1.34

(34)

SG

Max

1.06

(27)

1.34

(34)

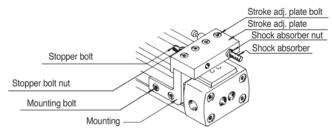
2.17

(55)

1.73

(44)

SR


32

40

50

63

Positioning of stroke adjustment unit

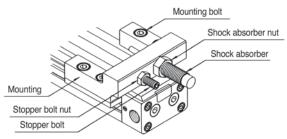
ø16~ø25

- Moving the stroke adjustment unit. The stroke adjustment unit can be moved by loosening the mounting bolts.
- (2) Locking of stroke adjustment unit.
- After moving the stroke adjustment unit to the appropriate position, lock it there by tightening the mounting bolts to the torque values shown in Figure 1. Insufficient to que may cause the stroke adjustment unit to slip out of position.

Figure 1

Torque values for tightening stroke adjustment unit.

	Tightening torque					
Bore size	Mounting bolt (Ib-in)	Stroke adj. plate bolt (lb-in)				
16mm	9-11	4.0				
20mm	22-24	4-6				
25mm	46-50	22-24				
32mm	195-213	-				
40mm	390-415	-				
50, 63mm	682-735	-				


(3) Stroke adjustment using the stopper bolt.

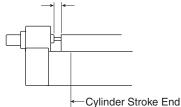
Adjust the stroke by loosening the stopper bolt nut and turning the stopper bolt. After adjusting the stroke, tighten the stopper bolt nut to the torque values shown in Figure 2. When adjusting the 16-25 mm cylinders, due to the small amount of clearance between the table and the stroke adjustment plate, adjust the stroke by moving the complete stroke adjustment unit.

Figure 2

Torque values for tightening stopper bolt nut and shock absorber nut.

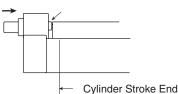
	Tightening torque					
Bore size	Stopper bolt nut (Ib-in)	Shock absorber nut (lb-in)				
16mm	10-11	12-16				
20mm	22-24	26-35				
25mm	73-84	40-53				
32mm	195-213	66-89				
40mm	390-425	195-266				
50mm	682-735	487-620				
63mm	1772-1914	487-620				

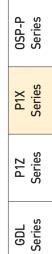
ø32~ø63


(4) Adjustment of shock absorber.

Adjust the absorption energy of the shock absorber by changing the operating stroke of the shock absorber. This is done by loosening the shock absorber nut and turning the unit. When adjustment is complete, tighten the shock absorber nut to the torque values shown in Figure 2.

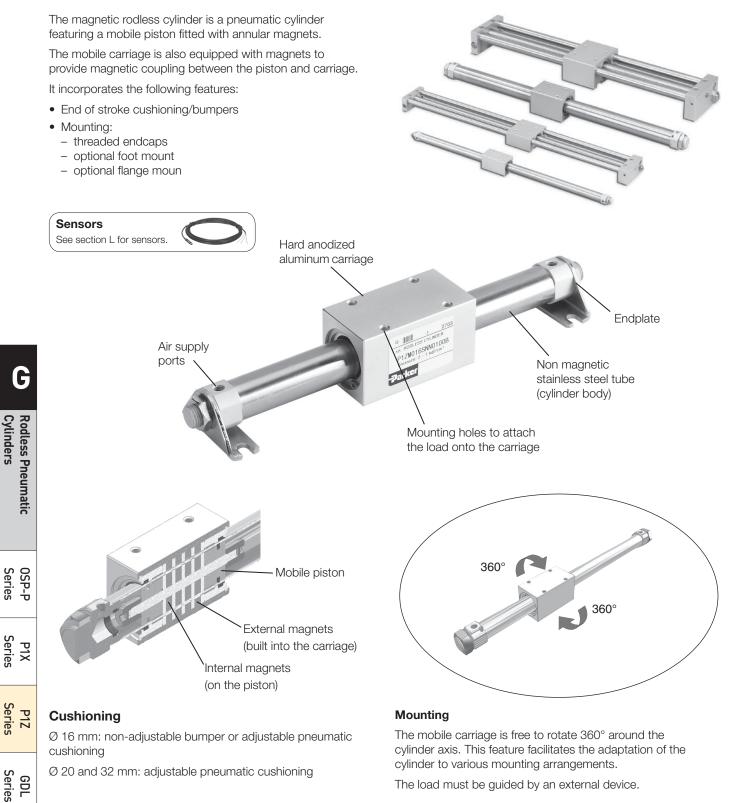
(5) Notes on usage.


The shock absorber absorbs rated energy with rated stroke. The factory setting allows a small amount of shock absorber stroke before it bottoms out. Readjust the location of the shock absorber so that the complete stroke of the absorber is utilized.


Absorption energy as set at factory: Small margin with stroke of shock absorber.

position of the aboat abaarbar until the plunged

Adjust the position of the shock absorber until the plunger of the shock absorber is fully depressed.

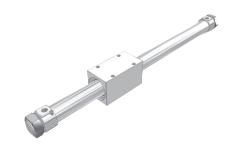


P1Z Series

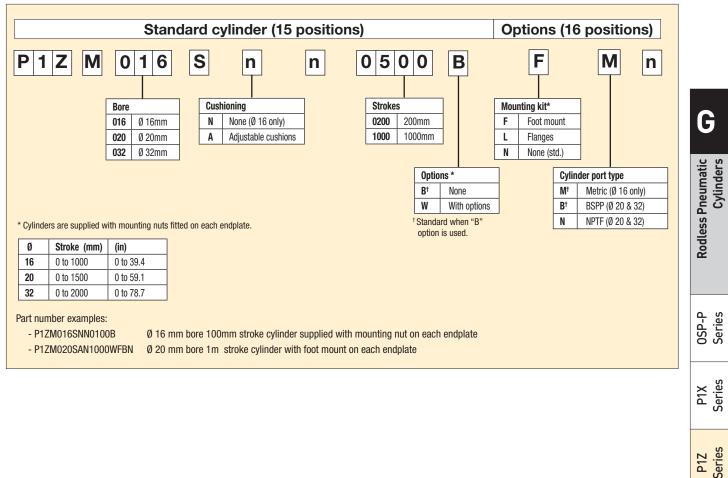
Basic Version

The load must be guided by an external device.

ЬT


For inventory, lead times, and kit lookup, visit www.pdnplu.com

P1Z Series - Basic Version


- Available in 3 bores with stroke lengths up to 2000mm
- Adjustable air cushioning is available on all cylinders
- The load is fixed onto the mobile carriage by 4 tapped hole
- The cylinder is attached by the ends with jam nuts, flanges or foot mounts

Operating information					
Maximum pressure:	100 PSIG (7 bar)				
Minimum pressure:	29 PSI (2 bar)				
Temperature range:	14°F to 140°F (-10°C to 60°C)				

If external lubrication is added, this must always be continued.

Ordering information

GDL Series

Specifications - P1Z (magnetically coupled odless)

• Bore size mm (inch nominal):	16 (5/8)	20 (3/4)	32 (1-1/4)	
Port size:	M5 BSPP, 10-32 NPT	1/8 BSPP, 1/8 NPT	1/8 BSPP, 1/8 NPT	
 Maximum stroke mm (inch): 	1000 (39.4)	1500 (59.1)	2000 (78.7)	
 Max. coupling force N (lbs): 	157 (35)	236 (53)	703 (158)	
Stroke tolerance mm:	+1.5/-0	<=1000 +1.5/-0	D; >1000 +2/-0	
• Piston speed m/s (inch/sec):	0.1 to 0.4 (4 to 15.75)			
Cushion:	Air cushion standard			
Lubrication:	Not required (If you choose	to lubricate your system,	continuing lubrication will be required	:)

Weights

Bore size		0	Weight at zero stroke		Weight per 25mm of stroke		
mm	inch	kg	lbs	kg	lbs		
16	5/8	0.28	0.62	0.01	0.02		
20	3/4	0.46	1.01	0.02	0.05		
32	1-1/4	1.35	2.98	0.04	0.08		

Conditions of Use

If external lubrication is added, this must always be continued.

Working medium, air quality

Working medium: Dry, filte ed compressed air to ISO 8573-1 class 3. 4. 3. or better

Recommended air quality for cylinders

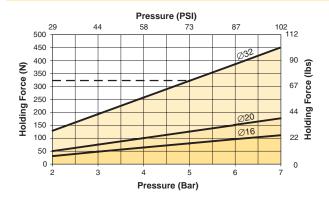
For best possible service life and trouble-free operation, ISO 8573-1, quality class 3.4.3 should be used. This means 5 µm filter (standa d filter), dew point 3°C for indoor operation (a lower dew point should be selected for outdoor operation) and oil concentration 1.0 mg oil/m³, which is what a standard compressor with a standard filter gives

iSO 8573-1 Quality Classes

	Max. Pollu	ition	Water	Oil
Quality Class	particle size (µm)	max. concentration (mg/m ³)	max. pressure dew point (°C)	max. concentration (mg/m ³)
1	0.1	0.1	-70	0.01
2	1	1	-40	0.1
3	5	5	-20	1.0
4	15	8	+3	5.0
5	40	10	+7	25
6	_	_	+10	-

P1Z Series

G

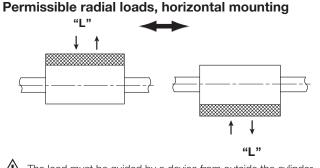

Rodless Pneumatic Cylinders

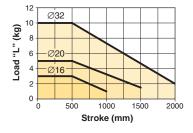
OSP-P Series

P1X Series

Pressure in the Cylinder / Pneumatic Holding Force

example:


Pressure: 5 bar


Fmax = 322 N for Ø 32 mm cylinder

Calculate the kinetic energy due to the load moved

Acceleration or deceleration should not exceed the magnetic coupling force of cylinder

Load diagrams

ǿ32

25

Zf (mm)

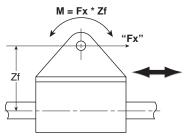
35

Ø32

020

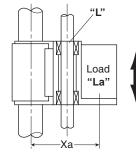
ø'16

6


50

15

Ø	L Max (kg)	(Ibs.)
16	3	6.6
20	5	11.0
32	10	22.0


The load must be guided by a device from outside the cylinder

Permissible axial loads, horizontal mounting

The load must be guided by a device from outside the cylinder

Permissible axial loads, vertical mounting

* If force due friction is unknown, use $0.1 \times (L + La)$.

L = Load guided by external device La = Direct mounting onto the cylinder Ff = Force due to friction*

G119

30

25

20

15

10

5

0 2

З

4

Pressure (Bar)

Load "LT" (kg)

500

400 (N) ..×4,,

300

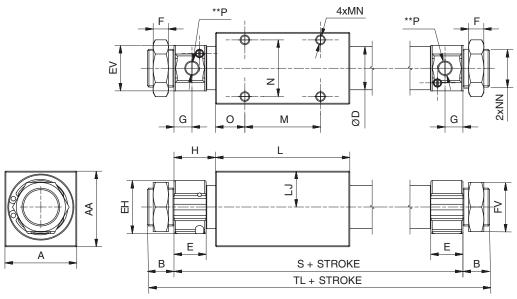
> Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

0SP-P Series

P1X Series

P1Z Series

GDL Series


	Max. Mome	Max. Moment M		
Ø	(Nm)	(in-lbs.)	(N	(lbs.)
16	1.2	11	112	25
20	2.5	22	175	39
32	8.5	75	450	101
* at 7	7 bar			

		load T	
	ø	(kg)	(lbs.)
	16	5	11
	20	10	22
	32	24	53
7	* at 6	5.5 bar	

Max Max. XA (mm) (in.) 122 4.8 142 5.6 174 6.8 LT = Load weight + guiding device weight + force due to friction

Basic Version

** = Air supply Ports

Ø	Α	AA	В	ØD	Е	Ø EH	Ø EV	F	FV	G	н	L	LJ	М	Ν	0
16	32	34	10	18	11	18	18	4	14	5.5	15.5	61	16	34	25	13.5
	(1.26)	(1.34)	(0.39)	(0.71)	(0.43)	(0.71)	(0.71)	(0.16)	(0.55)	(0.22)	(0.61)	(2.40)	(0.63)	(1.34)	(0.98)	(0.53)
20	38	40	14	22.8	17	28	24	8	26	9.5	22	71	19	40	30	15.5
	(1.50)	(1.57)	(0.55)	(0.90)	(0.67)	(1.10)	(0.94)	(0.31)	(1.02)	(0.37)	(0.87)	(2.80)	(0.75)	(1.57)	(1.18)	(0.61)
32	60	60	16	35	17	40	36	8	32	9.5	23	87	30	50	40	18.5
	(2.36)	(2.36)	(0.63)	(1.38)	(0.67)	(1.57)	(1.42)	(0.31)	(1.26)	(0.37)	(0.91)	(3.43)	(1.18)	(1.97)	(1.57)	(0.73)

ΤL

112

143

165

(5.63)

(6.50)

(4.41)

s 92

(3.62)

(4.53)

133

(5.24)

115

Rodless Pneumatic Cylinders

Ρ

M5 x 0.8

(10-32)

G 1/8

(1/8)

G 1/8

(1/8)

MN

M4 x 0.7 x 6

M5 x 0.8 x 8

M6 x 1 x 10

NN

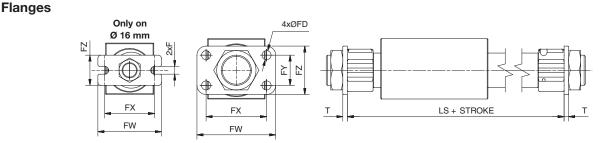
M10 x 1 x 6

M20 x 1.5 x 7

M26 x 1.5 x 7

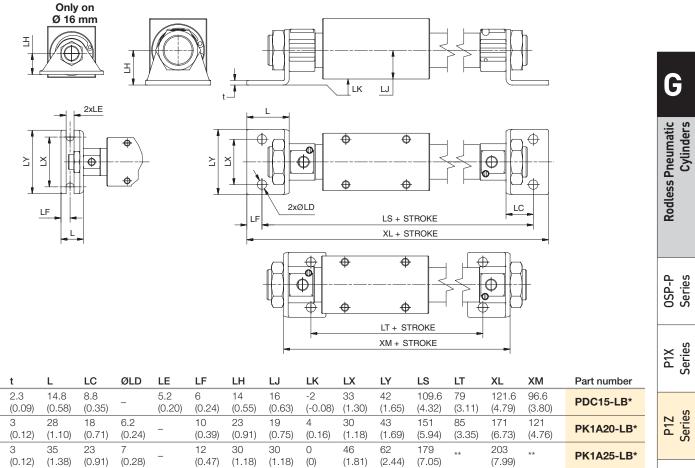
Ø

16


20

32

G



Mountings

Ø	F	ØFD	FW	FX	FY	FZ	т	LS	Part number
16	5.2 (0.20)	_	42 (1.65)	33 (1.30)	_	20 (0.79)	2.3 (0.09)	92 (3.62)	PDC15-FH
20	_	6 (0.24)	52 (2.05)	40 (1.57)	20 (0.78)	32 (1.26)	3 (0.12)	115 (4.53)	PK1A20-FH
32	_	7 (0.28)	80 (3.15)	64 (2.52)	28 (1.10)	44 (1.73)	5 (0.20)	133 (5.24)	PK1A25-FH

Brackets

* Set of 2 pcs

Ø

16

20

32

** Impossible mounting

Ó

G121

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics GDL Series

P1Z Series - Guided Version

The magnetic rodless cylinder is a pneumatic cylinder featuring a mobile piston with annular magnets.

The mobile carriage is also equipped with magnets to give magnetic coupling between the piston and carriage. The carriage slides along the main tube and is guided by two guide rods.

It incorporates the following features:

- Built-in guide rods
- Adjustable end-of-stroke bumpers
- Optional magnetic piston sensing
- Optional transfer porting

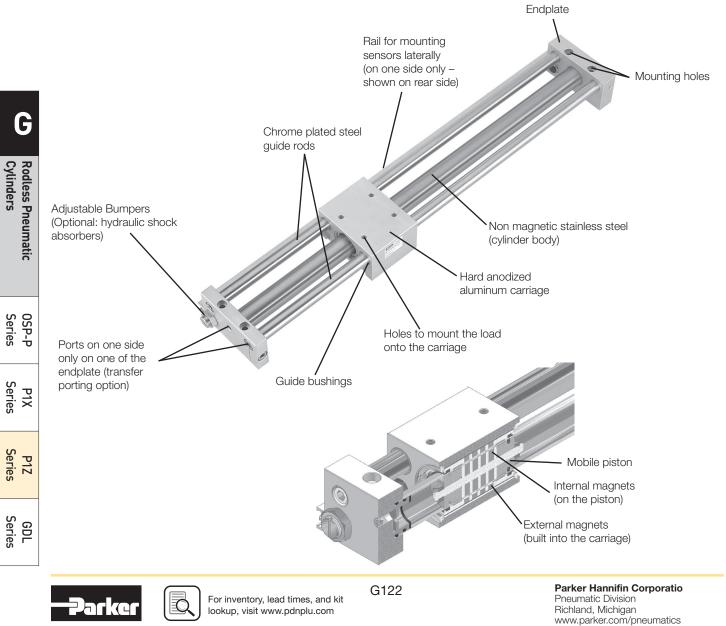
Guidance

The guided version consists of a carriage fitted with 4 plain bearings, guided on 2 rods.

This design provides high rigidity, accurate guidance and smooth movement of the carriage.

end of stroke

Each endplate can be fitted with an adjustable bumper or self-compensating shock absorbers.


Optional transfer porting

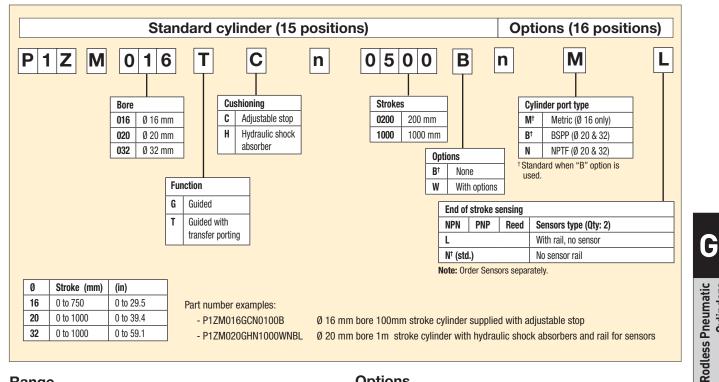
Cylinder air supply is located on one end only to facilitate cylinder installation and avoid long tube lengths for longer strokes.

Options

The following options are available to enhance the Magnetic Rodless cylinder functions:

- External bumpers: when low operating pressure, light loads and short strokes.
- External hydraulic shock absorbers: recommended for arduous applications.
- Reed and solid state sensors: provide sensing at an adjustable position along the entire stroke of the cylinder.

P1Z Series - Guided Version


Operating information

Maximum pressure:	100 PSIG (7 bar)
Minimum pressure:	29 PSI (2 bar)
Temperature range:	14°F to 140°F (-10°C to 60°C)

If external lubrication is added, this must always be continued.

Ordering information

Range

Magnetic rodless cylinder, guided version

Available in 3 diameters with possible strokes up to 1500 mm (59 in).

4 tapped mounting holes on the carriage.

Endcap mounting provided by 4 tapped and counterbored holes.

Options

external adjustable bumpers

Can be fitted on cylinder endcaps and p ovide noise reduction and adjustment at the end of stroke. Used when light loads and short strokes. Pneumatic air supply on one side only (transfer porting option).

external hydraulic shock absorbers

Self-compensating hydraulic shock absorbers can be used instead of bumpers for a greater cushioning effect at the end of stroke.

They are recommended for arduous applications.

Reed or solid state sensors:

A rail fitted on one side only of the cylinder p ovides mounting and position adjustment of sensors.

The rail is located on same side as the end of stroke stops.

For inventory, lead time, and kit lookup, visit www.pdnplu.com

G123

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

Cylinders

OSP-P Series

P1X Series

P1Z Series

GDL Series

Specifications - P1Z (magnetically coupled odless)

• Bore size mm (inch nominal):	16 (5/8)	20 (3/4)	32 (1-1/4)	
Port size:	M5 BSPP, 10-32 NPT	1/8 BSPP, 1/8 NPT	1/8 BSPP, 1/8 NPT	
 Maximum stroke mm (inch): 	750 (29.5)	1000 (39.4)	1500 (59.1)	
 Max. coupling force N (lbs): 	157 (35)	236 (53)	703 (158)	
Stroke tolerance mm:	+1.5/-0	<=1000 +1.5/-0	; >1000 +2/-0	
 Piston speed m/s (inch/sec): 	0.1 to 0.4 (4 to 15.75)			
Cushion:	Air cushion standard			
Lubrication:	Not required (If you choose	to lubricate your system,	continuing lubrication will be requi	ired.)

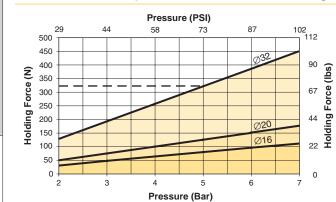
Weights

Bore size		Weight zero stre		Weight per 25mm of stroke		
mm	inch	kg	lbs	kg	lbs	
16	5/8	0.9	1.98	0.05	0.11	
20	3/4	1.52	3.35	0.08	0.17	
32	1-1/4	3.63	8.00	0.13	0.29	

Options						
Function	Description					
	Sensors mounting in T-slot					
Detection	Reed or solid state sensors (PNP or NPN)					
External rubber bumpers	Supplied pre-fitted in endplates if chose					
Hydraulic shock absorbers	Self-compensating shock absorbers supplied pre-fitted in endplates if chose					

G

Rodless Pneumatic Cylinders


OSP-P Series

P1X Series

P1Z Series

GDL Series

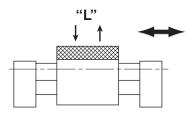
Pressure in the Cylinder / Pneumatic Holding Force

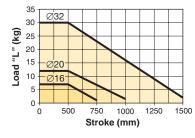
example:

Pressure: 5 bar

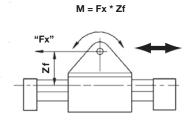
F_{max} = 322 N for Ø 32 mm cylinder

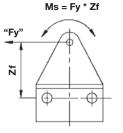
A Calculate the kinetic energy due to the load moved

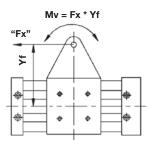

Acceleration or deceleration should not exceed the magnetic coupling force of cylinder



Load Diagrams

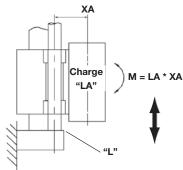

Permissible radial loads, horizontal mounting

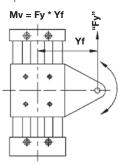




ø	L Max. (kg)	(lbs.)
16	7	15
20	12	26
32	30	66

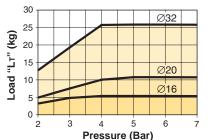
Permissible axial loads, horizontal mounting





	Max. mome	ent M	Max. mome	ent Ms	Max. moment Mv			
Ø	(Nm)	(in-lbs.)	(Nm)	(in-lbs.)	(Nm)	(in-lbs.)		
16	2.4	21	0.5	4.4	2.4	21		
20	5	44	1	8.9	5	44		
32	15	133	3	26.6	15	133		

Permissible axial loads, vertical mounting



Parker

L = Load guided by external device LA = Mounting direct onto cylinder LT = Load weight + guiding deviceweight + force due to friction Ff* = Force due to friction *If force due to friction is unknown,

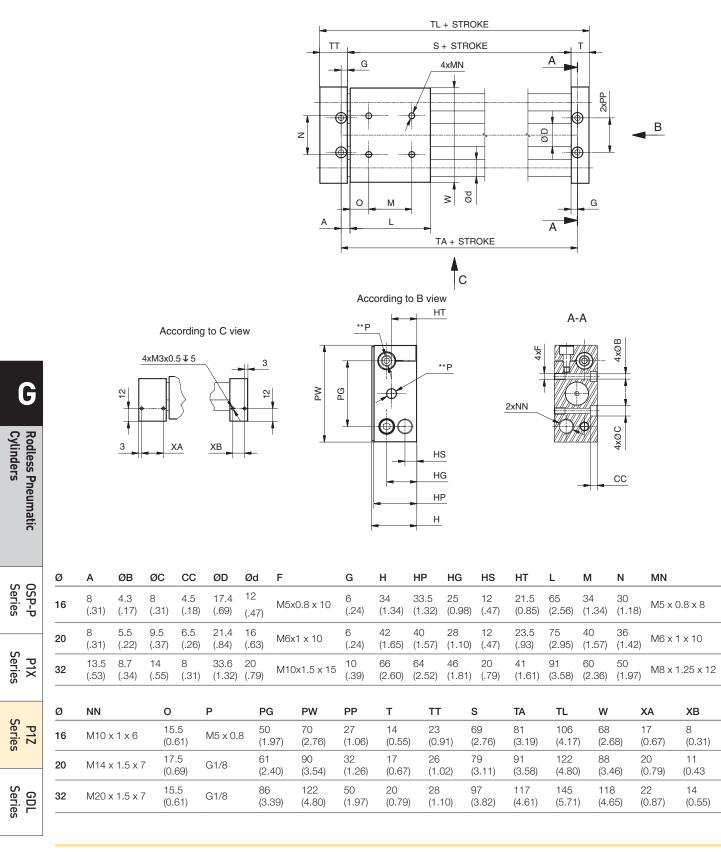
use 0.1 * (L + LA)

Max. load LT*	Max. XA
(kg)	(mm)
5	122
10	142
24	174
3.5 bar	
	load LT* (kg) 5 10 24

P1Z Series GDL Series

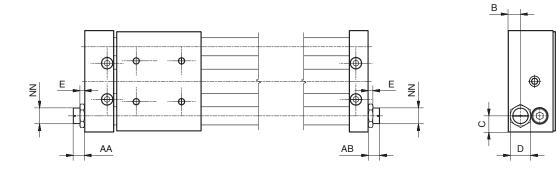
0SP-P Series

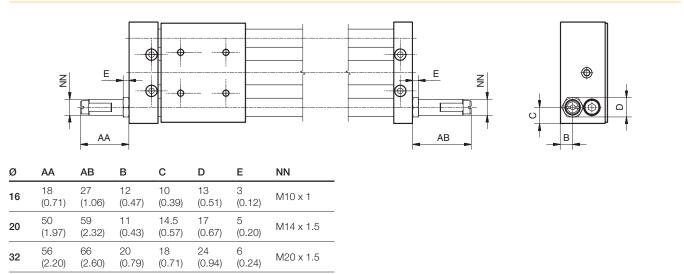
P1X Series


Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

G125 For inventory, lead time, and kit

Guided Version


** = Air supply ports


G126

Optional external Adjustable Bumpers

Ø	AA	AB	В	С	D	Е	NN
16	7.5 (0.30)	6.5 (0.26)	12 (0.47)	10 (0.39)	14 (0.55)	4 (0.16)	M10 x 1
20	10 (0.39)	10 (0.39)	11 (0.43)	14.5 (0.57)	18 (0.71)	4 (0.16)	M14 x 1.5
32	11 (0.43)	12 (0.47)	20 (0.79)	18 (0.71)	26 (1.02)	8 (0.31)	M20 x 1.5

Optional external Hydraulic Shock Absorbers

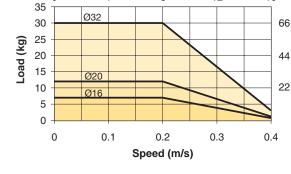
G127

Loads / speeds diagram

The diagram to the right exhibits the P1Z cylinders maximum capacities with an adjustable bumper.

If the intersection exhibits between speed and load is above the curves, it is imperative to use hydraulic shock absorbers to prevent cylinder damage.

example:


Ø 32 mm cylinder with a 0.3 m/s speed and 25 kg load Choose the hydraulic shock absorber option

Ø 20mm cylinder with 0.2 m/s speed and 10 kg load Choose the adjustable bumpers option

Parker

For inventory, lead time, and kit lookup, visit www.pdnplu.com

Speed (in/s)

8

0

4

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

12

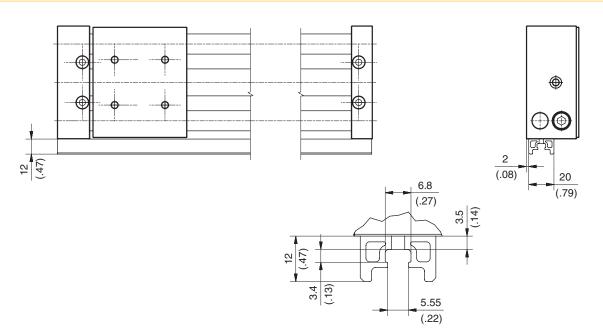
16

Load (Ibs.)

G

Rodless Pneumatic

0SP-P Series


P1X Series

P1Z Series

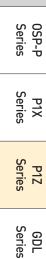
GDL Series

Cylinders

Optional Sensor Rail

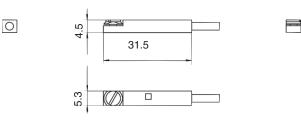


Detection

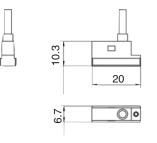

Reed or solid state sensor mounting is possible on one cylinder side only.

External aluminum profile integrates 1 -slot for sensor mounting.

Dimensions (mm)



Drop-in Global Sensor



G

Rodless Pneumatic Cylinders

Sensors with connection at 90°

Technical Data (see electronic Sensors Section)

Rodless Pneumatic Cylinders P1Z Series - Guided Version

end of stroke rubber bumpers (2 pieces)

Ø	Part number
16	9129609AS
20	9129610AS
32	9129611AS

Flow Controls (1 piece)

	Part number	Part number							
Ø	BSP Ports	NPT Ports	Metric Ports						
16	-	-	0876300300						
20	PTFL4PB6-1/8	0876300400	-						
32	PTFL4PB6-1/8	0876300400	-						

end of Stroke Hydraulic Shock Absorber

(1 piece)	
Ø	Part number
16	MC25MH-n B
20	MC150MH
32	SC300M-3 nB

Repair kits

Ø	Basic version	Guided version
16 (Cushioned)	P1ZM016SAn-R	-
16 (Non-cushioned)	P1ZM016Snn -R	P1ZM016Gnn -R
20	P1ZM020SAn-R	P1ZM020Gnn -R
32	P1ZM032SAn-R	P1ZM032Gnn -R

P1Z Series

GDL Series

GDL Series

Light, Smooth and FAST

Aluminum roller guides in a cutting machine for spectacle lenses. Both the work piece carriers and the motorized X - Y table axis are equipped with roller guides. The smooth operation and precision of the equipment ensures a fine cutting action

Aluminum roller guides in an automatic vibrator for flattening printed sheets of paper. To guarantee even pressure on the sheets of paper, the roller bridge is supported by precision roller guides.

(Baumann company photo)

Handling units for medical equipment. Smooth, easy movement with guideline roller guides.


(Dräger company photo)

Aluminum roller guides in the sliding carriage of a machine for producing cables. The projecting arm of the carriage is guided by two double rails each with two roller cassettes and can be moved manually with minimal force because of the low friction properties.

(Kabelmat company photo)

Single rail and roller shoe versions of the aluminum roller guide in a handling arrangement for stacks of paper. Various fittings and limit stops for stacking are moved on two axes horizontally and vertically. The robustness and reliability of the roller guides allows for continuous operation under high load conditions.

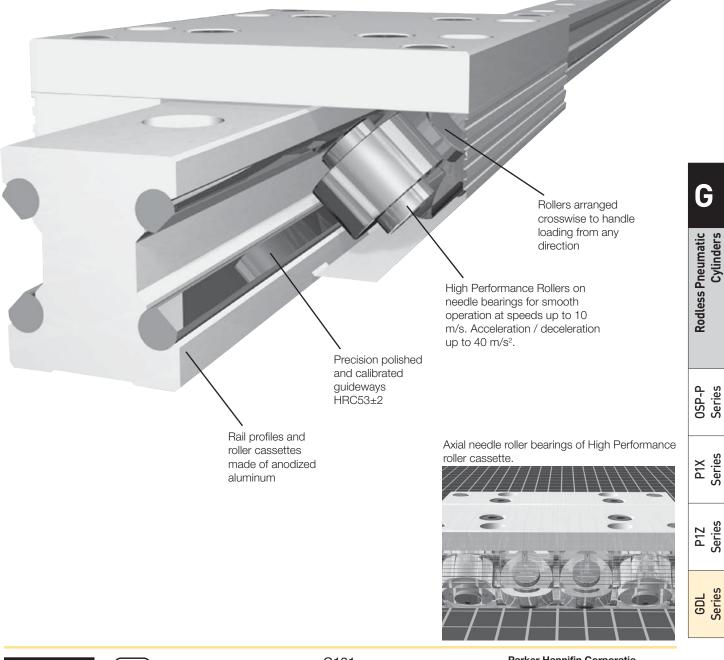
(Solms company photo)

- Light weight (anodized aluminum)
- Smooth and quiet operation
- Speeds up to 10 m/s
- Acceleration/deceleration up to 40 m/s²
- Loading from any direction
- Permanently lubricated guidance system
- Broad product range in various series high performance, standard and stainless steel versions
- High load and moment capacities
- Very cost effective
- Flexible mounting dimensions

For inventory, lead times, and kit lookup, visit www.pdnplu.com

G130

GDL Linear Guides Offer a Variety of Series and Options -High Performance... "Smooth Guidance"


Aluminum roller guides provide smooth operation and high load carrying capacity for industrial automation.

By the use of lightweight aluminum components the moving masses are minimized, travel speeds are increased and actuation energy is saved.

Aluminum roller guides are designed to carry medium weight loads economically. Their smooth action and speeds up to 10 m/s make them ideal for widespread use in many areas of application.

Aside from a main featured High Performance guide, others such as the Standard, Corrosion Resistant, High Dynamics and Grease-free versions are also available.

Aluminum roller guides are available in sizes 12, 15, 20, 25, 35 and 45mm. Rail lengths are from 200 mm to 4000 mm. For longer travel lengths, guide rails can be butt-jointed together.

Parker Hannifin Corporatio Pneumatic Division Richland, Michigan www.parker.com/pneumatics

Cylinders

High Performance Series:

(Sizes FDC12HP-... thru FDC45HP-...)

The High Performance series is the basis for GDL's development, which is used in the majority of applications. High Performance guides consist of 8 axial needle roller bearings, running on precision polished and hardened alloy spring steel guideways. These guide bearings are grease packed and shielded, while offering the highest load and moment rating capacities within the GDL product line.

Standard Performance Series:

G

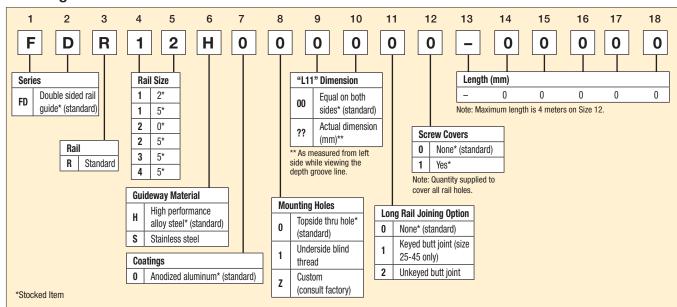
Cylinders

Rodless Pneumatic

OSP-P Series

P1X Series

P1Z Series


GDL Series

Ordering Information for GDL Rails

Rodless Pneumatic Cylinders **GDL Series**

(Sizes FDC12SP-... thru FDC45SP-...)

The Standard Performance series is intended for minor loads and moments for particularly economical guidance solutions. Standard Performance guides consist of 8 radial ball roller bearings, running on precision polished and hardened alloy spring steel guideways. These guide bearings are grease packed and sealed, while offering the lowest load and moment ratings available within the GDL product line, with the exception of the Grease-Free and the Anti-Friction / Corrosion Resistant series. Standard Performance series is the second most commonly used GDL guides for various applications and also provides excellent running behavior.

Ordering Information for GDL Cassettes

	1		2	3		4	5	(6	7	8		9	10	11	I	12	2	13	14		15	16
	F		D	C		1	2		4	Ρ	-		0	0	0)	0		0	0		0	0
	Seri	ies	-	۱ ۱		Rail	Size]			Greas	e						Mou	unting Holes			Ad	justment
	FD	Doub rail c	le sided assette*			1	2* 5*				0 (standar	- /					0	Topside threaded thru (standard)			0	None* (standard)
	(standard 2 2 Cassette 3						0* 5* 5*				7	Custom consult	factory)					1	Underside hole thru			1	Adjusted to specific rail*
:		C Standard					5*					Lubrication Options 0 None* (standard)						2	(unthreaded) Underside hol thru (threaded			tte Ler	•
							Bearin	Bearing Options					1 Central lube							<u>"</u>		lormal I standari	
							AM	Non-magnetic (bearing only)				2		Central lube (no nipple)							(consult		
							нс		I needle - high performance Z Custom (consult factory)** steel, non-corrosive*							ring M	ochanism			actory)*			
							HP	Axial needle - high performance			nce	Coatings				Locking Mechanism O None* (standard)			- İn	Wiper Options			
						alloy steel* (standard) Single row radial ball - standard performance - alloy steel*			ard	0 Anodized and standard hardware* (standard)			1 "L" ratchet handle* 2 Star grip handle*		0	0 With felt wipers* (standard)		ers*					
							or	(standard)	uu - alluy	31001		1		d and stainle	ss steel					1			
!	*Stocked Item **Minimum Order Quantity Required				ZZ	Factory** (consult factory				z	hardware* Custom (consult factory)			* Locking mechanism only available on FD Series size 15 thru 45 with Axial Needle Bearing - High				2 With felt wipers and scrapers*					
	IVIII	mmum	order Q	uantit	y Requi	eu											Performa	ance - Al	loy Steel.				

-Parker

For inventory, lead times, and kit lookup, visit www.pdnplu.com

G132

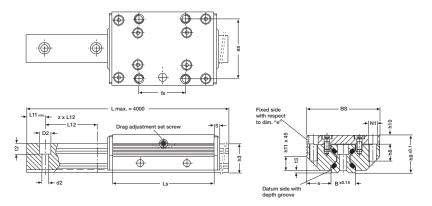
Parker Hannifin Corporation Pneumatic Division

Richland, Michigan www.parker.com/pneumatics

Product Line Overview

Characteristic	Unit	Description
Full profile wiper		Rollershoes and cassette are provided with snap-on full profile wipers. The snap-on full p ofil wipers are easily replaceable with available wipers kits.
Acceleration and deceleration	m/s² (ft/sec²)	40 m/s ² maximum (131 ft/s ² maximum)
Guide installation		Possible in any position.
Drag adjustment set screw		Cassettes can be adjusted at the factory or by the customer.
		Rollershoes can be set-up by the customer to incorporate the drag adjustment set screw feature. The drag adjustment set screw components are supplied with each pair of rollershoes.
Standard lubrication		Lifetime lubrication with standard grease-packed roller bearings.
Speed	m/s (ft/s)	Up to 10 m/s (or up to 33 ft/s)
Bearing types		Steel axial needle, Specials on request (ex: anti-magnetic, grease free, high dynamics) - consult factory
Operating temperature	C (F)	-10°C to 80°C (14°F to 176°F) temperature range
Specials available		Custom length cassettes and rollershoes for 100 piece lots minimum.
		Keyed butt-jointed rail sections for continuous rail lengths of 3900mm and above.
		Solid continuous length rails up to 3900mm.
		Offset or non-standard "L11" dimensions on opposite ends of cut rails.
		Integrated metal scraper with standard full profile wiper cur ently available.
		Rail underside blind mounting holes.

Material specification


Rail		Aluminum alloy
Guideways	Standard	High alloy spring steel HRC 53 +/- 2
	Corrosive resistant	Stainless steel guidewayl 46 HRC
Cassettes / ro	llershoes / top plates	Aluminum alloy
Rollers		Bearing steel / Stainless steel bearing steel

General Facts Pertaining to All Series:

Snap-on full profile wipers:	Rollershoes and cassettes can be provided with snap-on full profile wipers. The snap-on full p ofile wipers are easily replaceable with available wiper kits. See page G139 for respective wiper kit part numbers.	0SP-P Series
Cassette adjustment:	Cassettes can be adjusted at the factory or by the customer.	ss
Fasteners:	Rollershoes and cassettes use ISO screw quality 8.8 and DIN 433 washers. ISO screw quality 8.8 is recommended for mounting the rails also. Special stainless steel fasteners can be requested as necessary.	P1X Series
Carrying Capacity:	See load and moment rating tables on next page for your guide series of interest.	
Guide mounting position:	Optional.	P1Z Series
Lengths:	For longer than standard rail lengths, see keyed butt-jointed rail option on page G136.	Sei P
Lubrication:	GDL Aluminum Roller Guides are permanently lubricated with contained roller bearings grease.	
See ordering information on previous pa	ge to define your desi ed GDL guide features for ordering.	GDL Series

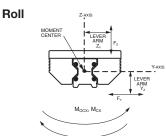
Cassette with double sided rail

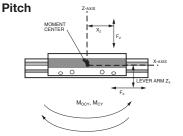
Both standard FDC version guides

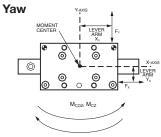
	Leng	Length											L11	L11				
Size	Ls	В	BS	h3	h9	as	d2	D2	е	fs	h8	h10	h11	min.	L12	t2	t3	N1
12	64	12.0	37	14.7	19	30	3.4	6	12.50	25	8	4.0	6	10	40	5.5	1.4	M4
15	78	15.5	47	18.7	24	38	4.5	8	15.75	30	10	5.0	8	10	60	6.0	2.0	M5
20	92	21.0	63	22.6	30	53	5.5	10	21.00	40	12	7.0	11	10	60	7.0	2.0	M6
25	98	23.0	70	27.0	36	57	6.6	11	23.50	45	16	8.5	13	10	60	10.0	2.5	M8
35	135	32.0	100	37.0	48	82	9.0	15	34.00	62	20	10.5	20	12	80	11.5	3.5	M10
45	165	45.0	120	46.0	60	100	11.0	18	37.50	80	24	13.5	22	16	105	14.5	4.0	M12
	. /	1																

Dimensions (mm)

G


Rodless Pneumatic Cylinders


OSP-P Series


Both underside mounting hole FDC version guides (Ref. ordering instructions)

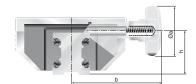
	Lengt	Length											L11					
Size	Ls	В	BS	h3	h9	as	d2	D2	е	fs	h8	h10	h11	min.	L12	t2	t3	N1
12	64	12.0	37	14.7	19	30	3.4	6	12.50	29	8	4.0	6	10	40	5.5	1.4	M4
15	78	15.5	47	18.7	24	38	4.5	8	15.75	34	10	5.0	8	10	60	6.0	2.0	M5
20	92	21.0	63	22.6	30	53	5.5	10	21.00	40	12	7.0	11	10	60	7.0	2.0	M6
25	98	23.0	70	27.0	36	57	6.6	11	23.50	45	16	8.5	13	10	60	10.0	2.5	M8
35	135	32.0	100	37.0	48	82	9.0	15	34.00	62	20	10.5	20	12	80	11.5	3.5	M10
45	165	45.0	120	46.0	60	100	11.0	18	37.50	90	24	13.5	22	16	105	14.5	4.0	M12

Dimensions (mm)

Series Series

Load & moment rating capacities (for cassettes on double sided rail)

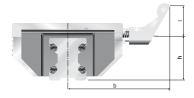
es Se	Dynamic	Static load rating Co (N)	Static moment rating capacities:			Dynamic	moment rating	g capacities:	_	Rail					
	load rating C (N)		Roll Mocx (Nm)	Pitch Mocy (Nm)	Yaw Mocz (Nm)	Roll Mcx (Nm)	Pitch Mcy (Nm)	Yaw Mcz (Nm)	Cassette weight (kg)	weight (kg) per "M"	Cassette series				
P1Z Series	High perforr	High performance series													
ů.	2800	3000	27	43	43	25	40	40	0.1	0.4	FDC12HP				
	4200	3400	37	58	58	45	72	72	0.3	0.8	FDC15HP				
(0	5400	5400	76	111	111	76	111	111	0.4	0.9	FDC20HP				
GDL Series	9000	10100	158	222	222	142	198	198	0.6	1.8	FDC25HP				
	12500	18000	423	559	559	294	388	388	1.5	3.2	FDC35HP				
	21200	25900	827	983	983	678	806	806	2.9	5.5	FDC45HP				


GDL Aluminum Roller Guides

High performance cassettes with lock device

The locking cassette with star grip handle can be stopped at any desired location on the rail. The clamping device does not exert forces on the rail guideways.

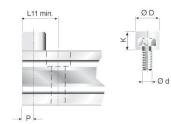
The clamping device is used in fixtu es which are movable manually, clamping and stop ledgers, feeding of tools and work pieces. Also available with L-ratchet handle.


Star grip handle dimensions

Special cassette types

Size	Øa	b	h	Clamp force	Part numbers star grip knob
12	N/A				
15	25	41	19.0	200	FDC15HP-00020000
20	25	49	23.0	250	FDC20HP-00020000
25	32	56	28.0	250	FDC25HP-00020000
35	50	83	38.5	350	FDC35HP-00020000
45	63	101	48.0	750	FDC45HP-00020000

Dimensions (mm), Force (N) with normal manual tightening.



L-ratchet handle dimensions

Size	I	b	h	Clamp force	Part numbers L-ratchet handle
12	N/A				
15	45	59.5	19.0	200	FDC15HP-00010000
20	45	67.5	23.0	250	FDC20HP-00010000
25	45	71	28.0	250	FDC25HP-00010000
35	63	96	38.5	350	FDC35HP-00010000
45	78	116	48.0	750	FDC45HP-00010000

end of stroke stop screws

The stop screws are screwed into threads (option) on the guide rails. The end of stroke stopping energy is reduced by a rubber cap. With guide rails where the L11 is less than the standard minimum, we offset the mounting hole by half of its diameter.

Note: Customer must drill and tap the holes for the stop screws.

Size	Ød	ØD	к	L11 min.	Р	Part number					
12	M5	12	8	15.0	6.0	63504A					
15	M5	12	8	16.0	6.0	63504A					
20	M5	12	8	17.0	6.0	63504A					
25	M6	15	10	20.5	7.5	63505A					
35	M8	19	13	26.5	9.5	63506A					
45	M10	24	16	33.0	12.0	63507A					
Dimer	Dimensions (mm)										

G

	es
	L
Ю	.e
	0,

GDL Accessories

Rail mounting screw covers

Material: Wear resistant plastic, resistant to oil and aging.

Mounting: Put a plastic plate on top and pound in uniformly. Remove residual burrs with a soft brush or finge nail.

Note: Use respective part numbers for ordering separately or include in rail part number.

Size	Cylindrical screw DIN912	ØD	Part number
12	M3	6	87752A
15	M4	8	42074FiL
20	M5	10	87754A
25	M6	11	87755A
35	M8	15	6973
45	M10	18	87757A
Dimensi	ons (mm)		

For inventory, lead time, and kit lookup, visit www.pdnplu.com

G135

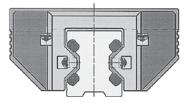
GDL Aluminum roller guides with wipers

Version with wipers

Integrated into an additional cover, a felt wiper is saturated with oil. Although dependent on the degree of contaminants, these wipers last for some 6000km, after which the felt wipers can either be washed or replaced.

For optimal cassette rolling performance, all holes in the guide rails should be filled with the plastic rail mounting screw covers.

Part numbers for replacement wiper kits


FDC series and size	Respective part number
12	84457B
15	84480B
20	84481B
25	84482B
35	84483B
45	84484B

*wiper kits are sold in pairs

NOTE: Use respective part numbers for ordering separately as replacements, or specify in cassette part number.

Full profile snap-on wipe

GDL's keyed butt-jointed rail option

G Rodless Pneumatic OSP-P P1X P1Z Cylinders Series Series Series

> GDL Series

GUIDELINE rails can be precisely fastened together using a factory offered keyed butt-joint option for continuous rail lengths, as shown in Figures 1 & 2.

Two rail sections are clamped together with mating round bar stock pieces that seat tangent to both rail section guideways on each side of the rail. While the rail sections are clamped together, a keyway slot is machined in the top and bottom sides of the rail, across the buttjoint. Screw holes are then drilled through the rail inside the keyway slot, so the opposing keyways can be drawn together tightly with screws. The round bar stock clamp is then removed, providing a rigid and well aligned keyed butt-joint.

The keyed butt-joint option provides optimum alignment of all guideways from one rail section to the next. This allows for optimum "smooth" guidance of the cassette bearings, while crossing rail butt-joints.

The keyed butt-jointed rail option is currently available in the FDR version 25, 35, & 45 mm rail sizes. For a keyed buttjoint on rail sizes 25, 35 or 45 mm, specify P/N:# GDL-BJK

Consult factory for other size possibilities.

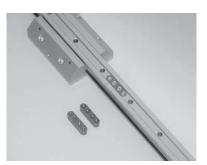
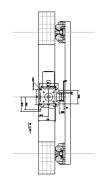



Figure 2

Figure 3

GDL linear guides couple well with various structural aluminum extrusions and Parker-Origa OSP-P actuators. Mounting can be easily accomplished using standard fasteners and mounting brackets. See Figure 3 above.

-Parker

For inventory, lead times, and kit lookup, visit www.pdnplu.com

G136

1. Features of the Guide System

Aluminum roller guides consist of a double sided rail and a roller cassette or two single sided rails and two roller shoes. Aluminum roller guide rails and cassettes are made of aluminum alloy. The rollers are very smooth running on precision polished guideways made of high alloy spring steel. The special cross pattern orientation of the running rollers provides high load and moment capacity in all directions.

Their special features are: light weight, small dimensions, and high speed of displacement. Aluminum roller guides are economical and universal handling components, which are mostly or all corrosion-resistant and available at a favorable price.

2. Size of the Guide System

To select the right guide size, first the moments and fo ces acting on the bearing have to be determined.

Recommended safety factors (with ISO screws quality 8.8):

Thrust load	S > 1.3
Tensile load	S > 4.0
Moment load	S > 6.0

3. Material

The basic body of GDL aluminum roller guides is made of aluminum alloy. The guideways consist of hardened, high alloy spring steel or of stainless steel. By using basic bodies of aluminum, the moved masses are reduced which allows lightweight construction requiring lower moving forces and reduced energy consumption. Still the integrated GDL system sustains high load and moment ratings.

4. Operating Temperature

GDL linear guides can be operated within a temperature range from -10° C up to 80°C. For other temperatures, please consult factory.

5. Screwed Connections

GDL linear guides are fixed to the mating structu e by the mounting holes in the rails and the cassettes. ISO screw quality 8.8 should be used with DIN 433 washers.

To secure the screwed connections, we recommend that suitable locking means be utilized as necessary.

Mounting screw torque specifications

Screw	Quality 8.8 [Nm]
M3	1.1
M4	2.5
M5	5.0
M6	8.5
M8	21.0
M10	41.0
M12	71.0

6. Wipers

The guideways of aluminum roller guides are equipped with wipers to protect against coarse environmental contamination.

Rodless Pneumatic Cylinders **GDL Series**

7. Slide Resistance / Adjustment

Follow the steps on how to adjust GDL cassettes to the rail.

The new GDL catalog has many changes due to an expanded product line. The change to feature descriptive part numbering was done to accommodate all current and future offerings of the GDL product. The goal is to have standard features and options available, for a perfect fit into your application

Included in the chart below are hex sizes, drag resistance and torque ratings for adjusting the cassette.

GDL Chart

GDE Onart						
	FDC 12	FDC 15	FDC 20	FDC 25	FDC 35	FDC 45
Top plate hex (mm)	2	3	4	4	5	6
Top plate torque (in lbs)	n/a	22.1	44.3	44.3	75.2	186
Adjustment hex (mm)	1	3	3	4	4	4
Drag resistance (oz) HP, HC, GF, VA	1.8- 7.9	3.6- 10.8	5.4- 16.2	7.2- 21.6	10.8- 32.4	12.6- 37.7
Drag resistance (oz) SP & SC	.7- 1.8	1.8- 3.6	3.6- 7.2	5.4- 10.8	7.2- 14.4	9- 18
Drag resistance (oz) HD	n/a	n/a	n/a	9- 18	14.4- 25	18- 28.7

7.1 GDL Adjustment Procedure

Do not measure sliding resistance with wipers on.

1) Lay the rail out on the flat surface with the **datum** line facing away from you. Anchor the rail to keep it from shifting when sliding resistance is applied to the cassette.

G

Rodless Pneumatic

OSP-P Series

P1X Series

P1Z Series

GDL Series

Cylinders

The datum line is a reference groove on one side of the rail.

2) Set the roller cassette on the rail with the adjustment screw facing towards you, while the datum line on the rail is away from you. Do not install the wipers on the cassette yet.

Do not install the wipers yet.

 Make sure the four bolts on the adjustable side of the cassette are slightly loose and the bolts on the fixed side are tight before adjusting the drag screw.

One side of the cassette is fixed and the other side is floating.

 The drag hex screw is located on one side of the cassette. Adjust the screw in for more drag and out for less. Do not try to adjust cassette with top plates bolts tight.

See the chart for drag adjustment hex screw size.

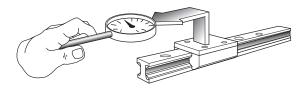
- 5) Adjust the drag on the cassette by sliding as it slides down the rail. Feel for an even amount of resistance as you turn the hex screw in and out.
- 6) Tighten down the top plate bolts to the proper torque specification. The tightening of the top plate bolts will add some resistance. If necessary, the adjustment procedure can be repeated for better sliding resistance for your application.

See the chart for top plate hex size and torque rating.

7) If the adjustment is done without a scale, it should move evenly. Some examples of improper adjustment are: If the

cassette "hops", it is too tight. If it is too loose, the top plate of the cassette will have play. Try to be in the middle.

8) To check your settings use a pull or push style scale. Slide the cassette down the entire rail at an even speed, measuring the drag resistance. Your highest drag rating should be referenced when looking at the chart.


See the chart for drag resistance ratings for the size and type of cassette.

 Install the clip on wipers. The wipers will add between 1-3 ounces of resistance. The wipers do not add any additional roller preload to the rail.

The clip on wipers can be installed at this time.

7.2 Double Sided Rail and Cassette

Aluminum roller guides are adjusted in such a way that the required stiffness under load is obtained. If self adjustment is preferred, we recommend that you measure the slide resistance as shown below. Before doing so, the mating structure should be checked for dimensional accuracy and flatness

The cassettes which are mounted on the rails are adjusted clearance-free, without play. This adjusting method is required at the point on the rail where the cassette travels with the least slide resistance. Adjustment is completed in the non-loaded condition. The tolerances below refer to this condition.

Slide	resis	tanc	e ad	jusm	ent 1	olera	nce	[N]							
Series			FDC_ , FDC	- '	FDC_	_VA	FDC	SP,	FDC_	_SC			FDC	_HD	
Size	12	15	20	25	35	45	12	15	20	25	35	45	25	35	45
Adjust. value	0.5	1.0	1.5	2.0	3.0	3.5	0.2	0.5	1.0	1.5	2.0	2.5	2.5	4.0	5.0
Max. value	2.0	3.0	4.5	6.0	9.0	10.5	0.5	1.0	2.0	3.0	4.0	5.0	5.0	7.0	8.0

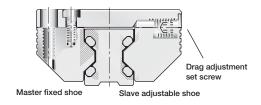
All values are without wipers

G

Rodless Pneumatic

Cylinders

OSP-P Series


P1X Series

Series

P1Z

GDL Series Tolerances in the guide system may cause slight variations in the slide resistance, when the adjusted cassette is moved along the guide rail.

7.3 Double Sided Rail and Roller Cassette

To change the clearance setting, first the slave adjustable shoe screws on the cassette top plate are slightly loosened.

-Parker

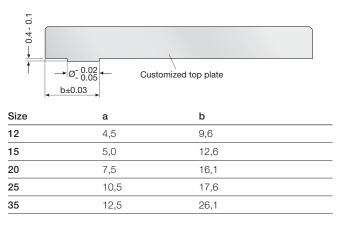
For inventory, lead times, and kit lookup, visit www.pdnplu.com

G138

Rodless Pneumatic Cylinders **GDL Series**

Afterwards, the drag adjustment set screw is turned to increase or decrease slide resistance of the cassette. Turning the drag adjustment set screw effects a displacement of the roller shoe in relation to the cassette top plate.

After re-tightening of the cassette top plate, the slide resistance can be checked. This procedure can be repeated until the desired slide resistance is achieved.


7.4 Rails and Rollershoes

When installing, it is important to distinguish between the master fixed side and the slave adjustable side ollershoe and rail. The rail on the master fixed side is aligned to the mating structure and fastened securely by all screws.

The rail on the slave adjustable side should be lightly tightened and movable with light force during initial alignment of parallel rails. Gauge blocks should be used between the parallel rails, by locating off the aligned and mounted master rail, in order to align the slave rail parallel to the master rail. Slave rail mounting bolts should be tightened as the slave rail is aligned at each bolt position. See paragraph 11.3 for further instructions on mounting parallel single sided rails.

7.5 Centering Groove on the Master Fixed Shoe and Custom Top Plate

Each pair of rollershoes are provided with centering grooves for optimum alignment to their mating top plate during mounting. One rollershoe should be designated as the master fixed rollershoe, even though both are designed with a centering groove on their top surface. The other shoe will serve as the slave adjustable side rollershoe. The mating customized top plate should be machined with a centering shoulder according to the following data.

7.6 Adjusting Cassette Built with Rollershoes and Custom Top Plate

The centering shoulder on the top plate should be assembled with its respective fixed ollershoe centering groove and securely torqued to recommended specification. See cassette screw torque specifications under step 5, on p evious page.

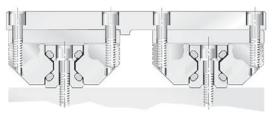
Assemble the adjustable rollershoe to the top plate also, parallel to the fixed ollershoe on the same side of the top plate. Its fasteners should be lightly tightened so that the adjustable rollershoe can be moved with light finger p essure.

As assembled cassette can then be slid onto parallel rails, while keeping the fixed ollershoe on the master fixed rail side. The incorporated drag adjustment set screw can then be turned clockwise to remove cassette play, or counter clockwise to reduce slide resistance while maintaining zero play.

Once the desired slide resistance is achieved with no cassette play, the adjustable rollershoe fasteners can also be torqued to specification

8. Running accuracy

The running accuracy is measured from the top plate surface of the cassette, to the ideal straight line of travel. Running accuracy of the cassette to the rail is +/- .03mm (.0012") per meter, granted no greater than (.0024") straightness deviation per meter is maintained when mounting the rail.


9. Contact and support surfaces

The contact and support surfaces have a substantial influence on functioning and precision of linear guides. Depending on the functional requirements of the system, the mating structure has to be machined with the corresponding degree of precision.

Machining errors on the mating structure will otherwise add to the running error of the guide system. In order to assure troublefree functioning, we recommend that a max. straightness deviation of $\leq 0.1 \text{ mm} (.0039")$ per running meter be maintained when mounting the rail.

10. Design hints

10.1 Parallel double sided rails and cassettes

The master fixed rail should always be established straight and true first, within the maximum straightness deviation specifie in paragraph 9. With parallel rail arrangements, both rails should be mounted on the same mounting surface elevation and treated with equal surface preparation and tolerancing practices. Precise alignment in terms of spacing, parallelism and height is very important.

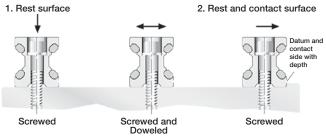
When coupled parallel to a driving actuator system, the adjustable side of the cassette should be placed on the side closest to the driving actuator. This will minimize driving actuator torque transferred to the adjustable side of the cassette.

11. Guide mounting instructions

The useable load capacity is influenced by the connection between the guide elements and the mating structure. For this reason, a flat, straight and solid secu e mounting surface should be provided. Adequate support of qualified loads and moments can then be achieved, along with desired running accuracy.

11.1 Mounting Double Sided Rails and Cassette

Depending on the load situation, certain double sided rails



G139

Rodless Pneumatic Cylinders **GDL Series**

should either be screwed or screwed and dowelled, and respectively put into grooves or against a shoulder.

The rails can be secured best against shoulders and are screwed or screwed and dowelled to the mating structure.


After final adjustment of rail straightness and parallelism, the rail mounting screws are tightened starting in the middle of the rail length. Rail mounting bolts should be torqued to specification by alternating between each bolt. The installer should start with the bolt in the center of the rail length and proceed by alternating between each bolt left of center and each bolt right of center, while working towards both ends of the rail.

Afterwards, the cassette should be moved back and forth along the total stroke distance of the rail. If the cassette travels smoothly, the mounting process can proceed or be completed.

11.2 Mounting Parallel Double Sided Rails and Cassettes

With parallel double sided rail arrangements, we recommend that the master fixed rail side and slave adjustment rail sides of the guide system be identified. This allows optimum tolerances in parallelism to be achieved best by adjusting the slave adjustable rail, parallel to the master rail. The master fixed rai side should be mounted first to achieve the initial line of straight travel.

The example below displays a convenient method for adjusting the slave adjustable rail parallel to the fixed master rail. Once the cassette travel is smooth, without play, one can proceed with rail mounting.

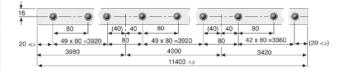
Note that the top plate spanning across the cassettes on opposite rails is completely bolted down to the cassette on the master fixed side onl . The top plate end over the slave adjustable side is only bolted in one location, in the center of the slave adjustment side cassette. With one bolt holding the

Catalog 0900P-6 Technical Data

top plate to the slave adjustment side cassette, this cassette can pivot while the slave adjustable rail self-aligns parallel to the fixed master rail side. The floating top plate setup is s oked along the entire rail length, to establish the parallelism between the two rails.

Calibrated gauge blocks can also be used to establish equal integrity in rail parallelism. The installer should seat and temporarily clamp short pieces of precision ground round stock, tangent to the two guideways on the inside of each rail.

Precision Round Stock Sizes Ø mm	1
11	
11	
14	
16	
27	
35	
	11 14 16 27


The calibrated gauge blocks can then be used, to locate off the precision round stock on the master fixed rail, in o der to set the slave adjustable rail parallel. The gauge blocks are then locating the same way that the floating top plate is, b referencing both the master and slave rail guideway surfaces to establish parallelism.

Once the slave adjustable rail has been self-aligned, its bolts should also be torqued to specification in the o der mentioned in paragraph 11.1. The top spanning across both cassettes on opposite rails, can then be securely fastened using all cassette mounting bolt holes.

12. Keyed Butt-jointing of Rail Sections

12.1 Rail Hole Spacing

Butt-jointed rails over L = 4000 mm are sectioned together according to the GDL standard. See "GDL's Keyed Butt-Jointed Rail Option" on page G136. Butt-jointed rails sections are cut so that the standard rail mounting hole spacing is maintained across all butt-joints.

Keyed butt-jointed rails are usually shipped completely assembled, but sometimes must be shipped partially assembled, due to shipping length limitations and shipping care. Partially assembled butt-jointed rails are supplied with a butt-jointing clamping fixtu e and the keyways and screws for fastening rail section together.

12.2 Mounting of butt-jointed rails

Clean mounting surfaces, then place rail sections loose on the guide path, one behind the other. Lay the rails in their correct sequence of the system design (i.e.: 1, 2, 3, 4...etc.). The orientation of the depth groove on the lower surface of the rail should always be on the same side for all rail sections being butt-jointed.

Rodless Pneumatic Cylinders **GDL Series**

Any non-assembled rail sections should be aligned with the factory supplied butt-joint clamping fixtu e as displayed below.

See explanation of "GDL's Keyed Butt-Jointed Rail Option" on page G136.

Once all rail sections are assembled, the complete guide path can be aligned and fastened. Alignment and fastening should be conducted according to the applicable guide arrangement and steps previously described in this technical information section.

G

P1X Series

Series

P1Z

GDL Series

Units Conversion Tables

Force Conversions:

Multiply	By Conversion Factor Result			
pound-force	4.448	Newton		
Newton	0.225	pound-force		
kilogram-force	9.807	Newton		
Newton	0.102	kilogram-force		

Acceleration Conversions:

Multiply	By Conversion	Factor Result
feet/section ²	0.305	meter/second ²
meter/second 2	3.281	feet/second 2
inch/second ²	0.025	meter/second ²
meter/second ²	39.370	inch/second ²

Mass Conversions:

Multiply	By Conversion Factor Result		
ounce	28.349	gram	
gram	0.035	ounce	
kilogram	35.279	ounce	
gram	0.001	kilgram	
pound	0.453	kilogram	
kilogram	2.205	pound	

Bending Moment or Torque Conversions:

Multiply	By Conversion Factor Result		
pound-foot	1.356	Newton-meter	
Newton-meter	0.737	pound-foot	
Newton-meter	0.102	kilogram-meter	
Kilogram-meter	9.807	Newton-meter	

Velocity conversions:

Multiply	By Conversion Factor Result		
mile/hour	1.609	kilometer/hour	
kilometer/hour	0.621	mile/hour	
feet/second	0.305	meter/second	
meter/second	3.281	feet/second	
inch/minute	0.025	meter/minute	
meter/minute	39.370	inch/minute	

Length conversions:

Multiply	By Conversion Factor Result			
inch	25.4	millimeter		
millimeter	0.039	inch		
inch	0.025	meter		
meter	39.370	inch		
foot	0.305	meter		
meter	3.281	foot		

Rodless Pneumatic Cylinders

GDL	P1Z	P1X
Series	Series	Series

0SP-P Series

O

www.parker.com/pneumatics

GDL Application Sheet

Dhana	Fo <i>ii</i>	
	Fax:	e-mail:
Roll	M	Lengh of rails Distance between rails
Pitch	Pitch load X - Distance R ARM Z _x Y - Distance Z - Distance	Technical Data: Stroke Horizontal
Yaw		Velocity / Speed Acceleration Load / Mass
MOMENT CENTER X, CENTER	Yaw load	Load Distances
	X - Distance LEVER ARM Y Y - Distance	Environment:
M _{COZ} , M _{CZ}	Z - Distance	